Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 13: 100212, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35498963

RESUMO

Flavour of tea is mainly contributed by a group of polyphenols - flavonoids. However, the content of flavonoid fluctuates seasonally and is found to be higher in the first flush of tea, when compared to the second flush. This disparity in the flavonoid content, and hence taste, incurs heavy economic losses to the tea plantation industry each harvest season. For our present study, four key product-specific enzymes (PAL, FNS, FLS and ANS) of the tea-specific flavonoid pathway were selected to perform molecular docking studies with specific virtually screened allosteric modulators. Results of docking analyses showed Naringenin, 2-Morpholin-4-ium-4-ylethanesulfonate, 6-C-Glucosylquercetin, 2-Oxoglutaric acid, 3,5,7,3',4'-pentahydroxyflavone to be capable of improving the spontaneity of the enzyme-substrate reactions in terms of docking score, RMSD values, and non-covalent interactions (H-bond,hydrophobic interaction, Π-stacking, salt bridge, etc.). Further, the evolutionary relationship of tea flavonoid pathway enzymes was constructed and compared with related taxa. The codon usage-based of tea flavonoid biosynthetic genes indicated the non-biasness of their nucleotide composition. Overall this study will provide a direction towards putative ligand-dependent enhancement of flavonoid content, irrespective of seasonal variation.

2.
Comput Biol Med ; 135: 104591, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216889

RESUMO

The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.


Assuntos
COVID-19 , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Simulação por Computador , Humanos , Filogenia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...