Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(3): 031103, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905350

RESUMO

Modified gravity theories can accommodate exact solutions, for which the metric has the same form as the one in general relativity, i.e., stealth solutions. One problem with these stealth solutions is that perturbations around them exhibit strong coupling when the solutions are realized in degenerate higher-order scalar-tensor theories. We show that the strong coupling problem can be circumvented in the framework of the so-called U-DHOST theories, in which the degeneracy is partially broken in such a way that higher-derivative terms are degenerate only in the unitary gauge. In this sense, the scordatura effect is built-in in U-DHOST theories in general. There is an apparent Ostrogradsky mode in U-DHOST theories, but it does not propagate as it satisfies a three-dimensional elliptic differential equation on a spacelike hypersurface. We also clarify how this nonpropagating mode, i.e., the "shadowy" mode shows up at the nonlinear level.

2.
Phys Rev Lett ; 128(4): 041301, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148121

RESUMO

We present a simple class of mechanical models where a canonical degree of freedom interacts with another one with a negative kinetic term, i.e., with a ghost. We prove analytically that the classical motion of the system is completely stable for all initial conditions, notwithstanding that the conserved Hamiltonian is unbounded from below and above. This is fully supported by numerical computations. Systems with negative kinetic terms often appear in modern cosmology, quantum gravity, and high energy physics and are usually deemed as unstable. Our result demonstrates that for mechanical systems this common lore can be too naive and that living with ghosts can be stable.

3.
Phys Rev Lett ; 118(9): 091104, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306299

RESUMO

The standard cold dark matter model with a cosmological constant (Λ-CDM) predicts a growth of structures which tends to be higher than the values of redshift space distortion (RSD) measurements if the cosmological parameters are fixed by the cosmic microwave background data. In this Letter, we point out that this discrepancy can be resolved or understood if we assume that the graviton has a small but nonzero mass. In the context of the minimal theory of massive gravity (MTMG), due to infrared Lorentz violations measurable only at present cosmological scales, the graviton acquires a mass without being haunted by unwanted extra degrees of freedom. While the so-called self-accelerating branch of cosmological solutions in the MTMG has the same phenomenology for the background as well as the scalar- and vector-type linear perturbations as the ΛCDM in general relativity (GR), it is possible to choose another branch so that the background is the same as that in GR, but the evolution of matter perturbations gets modified by the graviton mass. In studying the fit of such modified dynamics to the above-mentioned RSD measurements, we find that the ΛCDM model is less probable than the MTMG by 2 orders of magnitude. With the help of the cross-correlation between the integrated Sachs-Wolfe effect and the large-scale structure, the data also pin down the graviton mass squared around µ^{2}≈-(3×10^{-33} eV)^{2}, which is consistent with the latest bound |µ^{2}|<(1.2×10^{-22} eV)^{2} set by the recent LIGO observation.

4.
Phys Rev Lett ; 109(17): 171101, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215171

RESUMO

We argue that all homogeneous and isotropic solutions in nonlinear massive gravity are unstable. For this purpose, we study the propagating modes on a Bianchi type-I manifold. We analyze their kinetic terms and dispersion relations as the background manifold approaches the homogeneous and isotropic limit. We show that in this limit, at least one ghost always exists and that its frequency tends to vanish for large scales, meaning that it cannot be integrated out from the low energy effective theory. This ghost mode is interpreted as a leading nonlinear perturbation around a homogeneous and isotropic background.

5.
Phys Rev Lett ; 109(24): 241104, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368301

RESUMO

We report the strictest observational verification of CPT invariance in the photon sector, as a result of γ-ray polarization measurement of distant gamma-ray bursts (GRBs), which are the brightest stellar-sized explosions in the Universe. We detected γ-ray polarization of three GRBs with high significance levels, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E(±)(2) = p(2) ± 2ξp(3)/M(Pl), where ± denotes different circular polarization states of the photon, the parameter ξ is constrained as |ξ|

6.
Phys Rev Lett ; 102(3): 031601, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257340

RESUMO

We propose a consistent setup for the holographic dual of the strongly coupled large-Nc N=4 super Yang-Mills theory plasma which undergoes the Bjorken flow relevant to the quark-gluon plasma at BNL Relativistic Heavy Ion Collider and CERN LHC. The dual geometry is constructed order by order in a well-defined late-time expansion. The transport coefficients are determined by the regularity of the geometry. We prove, for the first time, that the dual geometry has an apparent horizon, hence, an event horizon, which covers a singularity at the origin. Further we prove that the dual geometry is regular to all orders in the late-time expansion under an appropriate choice of the transport coefficients. This choice is also shown to be unique. Our model serves as a concrete well-defined example of a time-dependent anti-de Sitter-space/conformal-field-theory dual.

7.
Phys Rev Lett ; 92(21): 211302, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15245273

RESUMO

We consider a dynamical approach to the cosmological constant. There is a scalar field with a potential whose minimum occurs at a generic, but negative, value for the vacuum energy, and it has a nonstandard kinetic term whose coefficient diverges at zero curvature as well as the standard kinetic term. Because of the divergent coefficient of the kinetic term, the lowest energy state is never achieved. Instead, the cosmological constant automatically stalls at or near zero. The merit of this model is that it is stable under radiative corrections and leads to stable dynamics, despite the singular kinetic term. The model is not complete, however, in that some reheating is required. Nonetheless, our approach can at the very least reduce fine-tuning by 60 orders of magnitude or provide a new mechanism for sampling possible cosmological constants and implementing the anthropic principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...