Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2349-2368, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299539

RESUMO

ATR is a key kinase in the DNA-damage response (DDR) that is synthetic lethal with several other DDR proteins, making it an attractive target for the treatment of genetically selected solid tumors. Herein we describe the discovery of a novel ATR inhibitor guided by a pharmacophore model to position a key hydrogen bond. Optimization was driven by potency and selectivity over the related kinase mTOR, resulting in the identification of camonsertib (RP-3500) with high potency and excellent ADME properties. Preclinical evaluation focused on the impact of camonsertib on myelosuppression, and an exploration of intermittent dosing schedules to allow recovery of the erythroid compartment and mitigate anemia. Camonsertib is currently undergoing clinical evaluation both as a single agent and in combination with talazoparib, olaparib, niraparib, lunresertib, or gemcitabine (NCT04497116, NCT04972110, NCT04855656). A preliminary recommended phase 2 dose for monotherapy was identified as 160 mg QD given 3 days/week.


Assuntos
Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Gencitabina
2.
Mol Cancer Ther ; 21(2): 245-256, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911817

RESUMO

Ataxia telangiectasia and Rad3-related (ATR) kinase protects genome integrity during DNA replication. RP-3500 is a novel, orally bioavailable clinical-stage ATR kinase inhibitor (NCT04497116). RP-3500 is highly potent with IC50 values of 1.0 and 0.33 nmol/L in biochemical and cell-based assays, respectively. RP-3500 is highly selective for ATR with 30-fold selectivity over mammalian target of rapamycin (mTOR) and more than 2,000-fold selectivity over ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and phosphatidylinositol 3-kinase alpha (PI3Kα) kinases. In vivo, RP-3500 treatment results in potent single-agent efficacy and/or tumor regression in multiple xenograft models at minimum effective doses (MED) of 5 to 7 mg/kg once daily. Pharmacodynamic assessments validate target engagement, with dose-proportional tumor inhibition of phosphorylated checkpoint kinase 1 (pCHK1) (IC80 = 18.6 nmol/L) and induction of phosphorylated H2A.X variant histone (γH2AX), phosphorylated DNA-PK catalytic subunit (pDNA-PKcs), and phosphorylated KRAB-associated protein 1 (pKAP1). RP-3500 exposure at MED indicates that circulating free plasma levels above the in vivo tumor IC80 for 10 to 12 hours are sufficient for efficacy on a continuous schedule. However, short-duration intermittent (weekly 3 days on/4 days off) dosing schedules as monotherapy or given concomitantly with reduced doses of olaparib or niraparib, maximize tumor growth inhibition while minimizing the impact on red blood cell depletion, emphasizing the reversible nature of erythroid toxicity with RP-3500 and demonstrating superior efficacy compared with sequential treatment. These results provide a strong preclinical rationale to support ongoing clinical investigation of the novel ATR inhibitor, RP-3500, on an intermittent schedule as a monotherapy and in combination with PARP inhibitors as a potential means of maximizing clinical benefit.


Assuntos
Ataxia Telangiectasia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Bioorg Chem ; 57: 186-197, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25035302

RESUMO

Tissue transglutaminase (TG2) is a calcium-dependent enzyme that catalyses several acyl transfer reactions. The most biologically relevant of these involve protein-bound Gln residues as an acyl-donor substrate, and either water or a primary amine as an acyl-acceptor substrate. The former leads to deamidation of Gln to Glu, whereas the latter leads to transamidation, typically resulting in protein cross-linking when the amine substrate is a protein-bound Lys residue. In this review, we present an overview of over fifty years of mechanistic studies that have led to our current understanding of TG2-mediated hydrolysis and transamidation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Acilação , Animais , Proteínas de Ligação ao GTP/química , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Especificidade por Substrato , Transglutaminases/química
4.
Org Biomol Chem ; 10(27): 5258-65, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22653499

RESUMO

Transglutaminases (TGases) catalyse the transamidation of glutamine residues with primary amines. Herein we report the first FRET-based activity assay for the direct detection of the ligation (transamidation) reaction mediated by tissue TGase (TG2). This novel assay was then used in a microtiter plate-based screen of a library of 18 potential amine substrates. From this screen it was discovered that propargyl amine serves as an excellent substrate for TG2. Subsequently, propargyl amine and 2-azidoethyl amine were validated independently as TG2 substrates with K(M) values of 44 ± 4 µM, and 0.99 ± 0.06 mM, respectively. In a proof-of-principle protein labelling experiment, the protein casein was selectively functionalized with propargyl amine using TG2 and subsequently fluorescently labelled through a dipolar cycloaddition reaction with an azido-fluorescein conjugate. This application demonstrates the strong potential of using TG2 for site-specific protein modification through a combination of enzymatic and bioorthogonal chemistry.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Pargilina/análogos & derivados , Peptídeos/metabolismo , Propilaminas/metabolismo , Transglutaminases/metabolismo , Estrutura Molecular , Pargilina/química , Pargilina/metabolismo , Peptídeos/química , Propilaminas/química , Proteína 2 Glutamina gama-Glutamiltransferase , Especificidade por Substrato
5.
PLoS One ; 6(1): e15893, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21283799

RESUMO

Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.


Assuntos
Matriz Extracelular/metabolismo , Fator XIII/metabolismo , Microtúbulos/fisiologia , Osteoblastos/citologia , Osteogênese , Células 3T3 , Animais , Diferenciação Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Fator XIII/fisiologia , Fator XIIIa/metabolismo , Proteínas de Ligação ao GTP , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases
7.
Chem Biol ; 17(10): 1143-50, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21035737

RESUMO

Tissue transglutaminase (TG2) catalyzes the crosslinking of proteins. TG2 has been implicated in fibrosis and vascular calcification, both of which lead to a common feature of aging known as arterial stiffness. In order to probe the role of TG2 in arterial rigidification, we have prepared a fluorescent irreversible inhibitor as a probe for TG2 activity (RhodB-PGG-K(Acr)-LPF-OH). This probe was synthesized on solid support, characterized kinetically (k(inact) = 0.68 min⁻¹, K(I) = 79 µM), and then used to stain the aorta from rats used as a model of isolated systolic hypertension (ISH). Interestingly, TG2 activity was thus shown to increase over 4 weeks of the hypertension model, corresponding with the previously observed increase in arterial stiffness. These results clearly suggest an association between TG2 and the phenomenon of arterial rigidification.


Assuntos
Aorta/enzimologia , Aorta/patologia , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Cobaias , Hipertensão/enzimologia , Hipertensão/patologia , Cinética , Peptídeos/química , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Rodaminas/química , Transglutaminases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...