Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 20(1): 40-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256682

RESUMO

In emergencies like the COVID-19 pandemic, the reuse or reprocessing of filtering facepiece respirators (FFRs) may be required to mitigate exposure risk. Research gap: Only a few studies evaluated decontamination effectiveness against SARS-CoV-2 that are practical for low-resource settings. This study aimed to determine the effectiveness of a relatively inexpensive ultraviolet germicidal irradiation chamber to decontaminate FFRs contaminated with SARS-CoV-2. A custom-designed UVGI chamber was constructed to determine the ability to decontaminate seven FFR models including N95s, KN95, and FFP2s inoculated with SARS-CoV-2. Vflex was excluded due to design folds/pleats and UVGI shadowing inside the chamber. Structural and functional integrity tolerated by each FFR model on repeated decontamination cycles was assessed. Twenty-seven participants were fit-tested over 30 cycles for each model and passed if the fit factor was ≥100. Of the FFR models included for testing, only the KN95 model failed filtration. The 3M™ 3M 1860 and Halyard™ duckbill 46727 (formerly Kimberly Clark) models performed better on fit testing than other models for both pre-and-post decontaminations. Fewer participants (0.3 and 0.7%, respectively) passed fit testing for Makrite 9500 N95 and Greenline 5200 FFP2 and only two for the KN95 model post decontamination. Fit testing appeared to be more affected by donning & doffing, as some passed with adjustment and repeat fit testing. A ≥ 3 log reduction of SARS-CoV-2 was achieved for worn-in FFRs namely Greenline 5200 FFP2. Conclusion: The study showed that not all FFRs tested could withstand 30 cycles of UVGI decontamination without diminishing filtration efficiency or facial fit. In addition, SARS-CoV-2 log reduction varied across the FFRs, implying that the decontamination efficacy largely depends on the decontamination protocol and selection of FFRs. We demonstrated the effectiveness of a low-cost and scalable decontamination method for SARS-CoV-2 and the effect on fit testing using people instead of manikins. It is recognized that extensive experimental evidence for the reuse of decontaminated FFRs is lacking, and thus this study would be relevant and of interest in crisis-capacity settings, particularly in low-resource facilities.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Ventiladores Mecânicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35954594

RESUMO

Hand sanitizers are used as an alternative to hand washing to reduce the number of viable microorganisms when soap and water are not readily available. This study aimed to investigate the anti-bacterial effectiveness of commercially available hand sanitizers and those commonly used in healthcare and community settings. A mapping exercise was done to select and procure different hand sanitizers (n = 18) from retailers. Five microorganisms implicated in hospital-acquired infections were selected and tested against each hand sanitizer: Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Twenty-one volunteers were recruited to do a handprint before and after applying the hand sanitizer. Only four out of eighteen hand sanitizers (22%) were effective against all tested bacterial species, and an equal number (22%) were completely ineffective. Seven hand sanitizers with a label claim of 99.99% were only effective against E. coli. Only five hand sanitizers (27%) effectively reduced bacteria on participants' hands. This study showed that only a fifth of hand sanitizers were effective against selected microorganisms. The findings raise a concern about the effectiveness of hand sanitizers and their role in infection, prevention, and control if not well regulated.


Assuntos
Desinfetantes , Higienizadores de Mão , Bactérias , Desinfetantes/farmacologia , Escherichia coli , Mãos , Desinfecção das Mãos , Higienizadores de Mão/farmacologia , Humanos , Sabões , África do Sul
3.
Artigo em Inglês | MEDLINE | ID: mdl-34639431

RESUMO

This study aimed to detect airborne Mycobacterium tuberculosis (MTB) at nine public health facilities in three provinces of South Africa and determine possible risk factors that may contribute to airborne transmission. Personal samples (n = 264) and stationary samples (n = 327) were collected from perceived high-risk areas in district, primary health clinics (PHCs) and TB facilities. Quantitative real-time (RT) polymerase chain reaction (PCR) was used for TB analysis. Walkabout observations and work practices through the infection prevention and control (IPC) questionnaire were documented. Statistical analysis was carried out using Stata version 15.2 software. Airborne MTB was detected in 2.2% of samples (13/572), and 97.8% were negative. District hospitals and Western Cape province had the most TB-positive samples and identified risk areas included medical wards, casualty, and TB wards. MTB-positive samples were not detected in PHCs and during the summer season. All facilities reported training healthcare workers (HCWs) on TB IPC. The risk factors for airborne MTB included province, type of facility, area or section, season, lack of UVGI, and ineffective ventilation. Environmental monitoring, PCR, IPC questionnaire, and walkabout observations can estimate the risk of TB transmission in various settings. These findings can be used to inform management and staff to improve the TB IPC programmes.


Assuntos
Mycobacterium tuberculosis , Exposição Ocupacional , Tuberculose , Atenção à Saúde , Pessoal de Saúde , Humanos , Controle de Infecções , Mycobacterium tuberculosis/genética , Exposição Ocupacional/análise , África do Sul/epidemiologia , Tuberculose/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...