Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biotheor ; 71(3): 15, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148457

RESUMO

It is common to say that the origin of the membrane potential is attributed to transmembrane ion transport, but it is theoretically possible to explain its generation by the mechanism of ion adsorption. It has been previously suggested that the ion adsorption mechanism even leads to potential formulae identical to the famous Nernst equation or the Goldman-Hodgkin-Katz equation. Our further analysis, presented in this paper, indicates that the potential formula based on the ion adsorption mechanism leads to an equation that is a function of the surface charge density of the material and the surface potential of the material. Furthermore, we have confirmed that the equation holds in all the different experimental systems that we have studied. This equation appears to be a key equation that governs the characteristics of the membrane potential in all systems.


Assuntos
Potenciais da Membrana , Animais , Transporte de Íons , Adsorção
2.
Prog Biophys Mol Biol ; 167: 3-11, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34728298

RESUMO

Two mathematically distinct physiological concepts, the Goldman-Hodgkin-Katz eq. (GHK eq.) and the Hodgkin-Huxley model (HH model) were successfully associated with each other in a prior work. The previous work was performed on the following premises (i) The membrane potential is generated by ion adsorption, as opposed to the classical ion transport mechanisms, (ii) The living cell is a thermodynamically real system rather than an ideal system, and (iii) The conductance employed in the HH model is replaced by the ion activity coefficient, which is weighted with the role of conductance. Consequently, the GHK eq. was mathematically associated with the HH model through the intermediary of Boltzmann ion distribution and mass action law. To verify if our theoretical formularization could afford a physiologically, physically and chemically viable model, we performed computational analysis using the formulae (quantitative correlations between various variables) we derived in the previous work. The computational results obtained through associating the GHK eq. with the HH model validated our model and its predictions. This outcome suggests that the current prevailing physiological concepts could be expanded further, to incorporate the newly proposed mechanisms. That is, GHK eq. and HH model could be interpreted via another set of founding principles that incorporate the ubiquitous phenomena of ion-adsorption.


Assuntos
Potenciais da Membrana , Adsorção
3.
Eur Biophys J ; 50(6): 805-818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866397

RESUMO

Membrane theory attributes the generation mechanism of the membrane potential to transmembrane ion transport, while Cheng's ISE (Ion selective electrode) mechanism attributes the ISE potential generation to ion adsorption on to the ISE surface. Although the membrane potential generation mechanism is different from the ISE potential generation mechanism, both the membrane potential and the ISE potential exhibit quite similar characteristics. For instance, both become indifferent to the variation of the ion concentration in both the high and the low ion concentration environment. Our experimental and theoretical investigations suggest that such a characteristic membrane potential behavior could be explained by the ion adsorption mechanism called Ling's adsorption theory (LA theory) instead of by membrane theory. If the membrane potential generation mechanism is explained by the LA theory, then the significant similarity between the membrane potential and the ISE potential is understandable, since both the LA theory and Cheng's ISE mechanism rely on the ion adsorption process. Although the LA theory is not acknowledged as the mechanism for the membrane potential generation in the mainstream physiology community, it does not have any serious defect in principle as a membrane potential generation mechanism. Hence, it is worth investigating if the current membrane potential generation mechanism needs reevaluation in light of evidence presented here. We conclude that the LA theory is a quite plausible membrane potential generation mechanism, suggesting that it may contribute to it.


Assuntos
Eletrodos Seletivos de Íons , Adsorção , Potenciais da Membrana
4.
Eur Biophys J ; 50(6): 793-803, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33885916

RESUMO

Membrane theory attributes the mechanism of generation of membrane potential to transmembrane ion transport, and is typified by the Goldman-Hodgkin-Katz equation (GHK eq.). Despite broad acceptance of the GHK eq. in physiology, it seems unable to explain some characteristics of the membrane potential. The long-underrated Ling's adsorption theory (LA theory) is another mechanism for membrane potential generation. The LA theory attributes the generation mechanism of the membrane potential to an ion adsorption-desorption process. Although the LA theory has not been seriously considered up until today, there are no serious defects in it as a membrane potential generation mechanism. In this work, the authors explain problematic facets of membrane theory from the view of the GHK eq. We propose an alternative concept based on the LA theory that addresses problematic issues with membrane theory. Consequently, an ion adsorption-desorption process could be a genuine mechanism of membrane potential generation as predicted by the LA theory.


Assuntos
Modelos Biológicos , Adsorção , Potenciais da Membrana
5.
Prog Biophys Mol Biol ; 158: 4-15, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32795484

RESUMO

Despite the long and broad acceptance of the Goldman - Hodgkin - Katz equation (GHK eq.) and the Hodgkin - Huxley equation (HH eq.) as strong tools for the quantitative analysis of the membrane potential behavior, for a long time they have been utilized as separate concepts. That is the GHK eq. and the HH eq. have not been associated with each other mathematically. In this paper, an attempt to associate these equations to each other mathematically was demonstrated and was successful by viewing the system in question as a thermodynamically real system rather than an ideal system. For achieving that, two fundamental physical chemistry concepts, the mass action law, and the Boltzmann distribution were employed. Hence, this paper's achievement is completely within the framework of common thermodynamics. Through this work, the origin of the membrane potential generation attributed to the ion adsorption-desorption process and governed by the mass action law and the Boltzmann distribution is expressed to be plausible, whereas the existing membrane potential generation mechanism states that membrane potential is generated by transmembrane ion transport. As at this moment, this work does not intend to deny the transmembrane ion transport as a membrane potential generation mechanism but urges the readers to reconsider its validity, since this work suggests that the ion adsorption-desorption mechanism is as plausible as the transmembrane ion transport mechanism as a cause of membrane potential generation.


Assuntos
Algoritmos , Biofísica , Potenciais da Membrana , Modelos Teóricos , Adsorção , Membrana Celular/metabolismo , Íons , Matemática , Microesferas , Modelos Biológicos , Polímeros , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...