Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 22(1): 127, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329403

RESUMO

BACKGROUND: The hydrogeological history of Lake Tanganyika paints a complex image of several colonization and adaptive radiation events. The initial basin was formed around 9-12 million years ago (MYA) from the predecessor of the Malagarasi-Congo River and only 5-6 MYA, its sub-basins fused to produce the clear, deep waters of today. Next to the well-known radiations of cichlid fishes, the lake also harbours a modest clade of only two clupeid species, Stolothrissa tanganicae and Limnothrissa miodon. They are members of Pellonulini, a tribe of clupeid fishes that mostly occur in freshwater and that colonized West and Central-Africa during a period of high sea levels during the Cenozoic. There is no consensus on the phylogenetic relationships between members of Pellonulini and the timing of the colonization of Lake Tanganyika by clupeids. RESULTS: We use short-read next generation sequencing of 10X Chromium libraries to sequence and assemble the full mitochondrial genomes of S. tanganicae and L. miodon. We then use Maximum likelihood and Bayesian inference to place them into the phylogeny of Pellonulini and other clupeiforms, taking advantage of all available full mitochondrial clupeiform genomes. We identify Potamothrissa obtusirostris as the closest living relative of the Tanganyika sardines and confirm paraphyly for Microthrissa. We estimate the divergence of the Tanganyika sardines around 3.64 MYA [95% CI: 0.99, 6.29], and from P. obtusirostris around 10.92 MYA [95% CI: 6.37-15.48]. CONCLUSIONS: These estimates imply that the ancestor of the Tanganyika sardines diverged from a riverine ancestor and entered the proto-lake Tanganyika around the time of its formation from the Malagarasi-Congo River, and diverged into the two extant species at the onset of deep clearwater conditions. Our results prompt a more thorough examination of the relationships within Pellonulini, and the new mitochondrial genomes provide an important resource for the future study of this tribe, e.g. as a reference for species identification, genetic diversity, and macroevolutionary studies.


Assuntos
Ciclídeos , Genoma Mitocondrial , Animais , Lagos , Filogenia , Genoma Mitocondrial/genética , Tanzânia , Teorema de Bayes
2.
Int J Parasitol ; 50(6-7): 471-486, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277985

RESUMO

Lake Tanganyika, East Africa, is the oldest and deepest African Great Lake and harbours one of the most diverse fish assemblages on earth. Two clupeid fishes, Limnothrissa miodon and Stolothrissa tanganicae, constitute a major part of the total fish catch, making them indispensable for local food security. Parasites have been proposed as indicators of stock structure in highly mobile pelagic hosts. We examined the monogeneans Kapentagyrus limnotrissae and Kapentagyrus tanganicanus (Dactylogyridae) infecting these clupeids to explore the parasites' lake-wide population structure and patterns of demographic history. Samples were collected at seven sites distributed across three sub-basins of the lake. Intraspecific morphological variation of the monogeneans (n = 380) was analysed using morphometrics and geomorphometrics of sclerotised structures. Genetic population structure of both parasite species (n = 246) was assessed based on a 415 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Overall, we observed a lack of clear geographical morphological differentiation in both parasites along a north-south axis. This lack of geographical population structure was also reflected by a large proportion of shared haplotypes, and a pattern of seemingly unrestricted gene flow between populations. Significant morphological and genetic differentiation between some populations might reflect temporal differentiation rather than geographical isolation. Overall, the shallow population structure of both species of Kapentagyrus reflects the near-panmictic population structure of both host species as previously reported. Morphological differences related to host species identity of K. tanganicanus were consistent with incipient speciation at the genetic level. Both parasite species experienced a recent demographic expansion, which might be linked to paleohydrological events. Finally, interspecific hybridisation was found in Kapentagyrus, representing the first case in dactylogyrid monogeneans.


Assuntos
Ciclídeos , Genética Populacional , Platelmintos/genética , Animais , Ciclídeos/parasitologia , Lagos , Filogenia , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA