Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(4): 427-37, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25893306

RESUMO

Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de novo FA synthesis as it converts newly synthesized saturated FAs to unsaturated FAs. Intriguingly, we find that inhibition of SCD-1 by BetA or, alternatively, with a specific SCD-1 inhibitor directly and rapidly impacts on the saturation level of cardiolipin (CL), a mitochondrial lipid that has important structural and metabolic functions and at the same time regulates mitochondria-dependent cell death. As a result of the enhanced CL saturation mitochondria of cancer cells, but not normal cells that do not depend on de novo FA synthesis, undergo ultrastructural changes, release cytochrome c and quickly induce cell death. Importantly, addition of unsaturated FAs circumvented the need for SCD-1 activity and thereby prevented BetA-induced CL saturation and subsequent cytotoxicity, supporting the importance of this novel pathway in the cytotoxicity induced by BetA.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Citocromos c/metabolismo , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Triterpenos Pentacíclicos , Estearoil-CoA Dessaturase/metabolismo , Ácido Betulínico
2.
Cell Death Dis ; 5: e1169, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24722294

RESUMO

Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA), an inhibitor of the permeability transition (PT) pore. Here we show that blocking apoptosis with general caspase inhibitors did not prevent cell death, indicating that alternative, caspase-independent cell death pathways were activated. BetA did not induce necroptosis, but we observed a strong induction of autophagy in several cancer cell lines. Autophagy was functional as shown by enhanced flux and degradation of long-lived proteins. BetA-induced autophagy could be blocked, just like apoptosis, with CsA, suggesting that autophagy is activated as a response to the mitochondrial damage inflicted by BetA. As both a survival and cell death role have been attributed to autophagy, autophagy-deficient tumor cells and mouse embryo fibroblasts were analyzed to determine the role of autophagy in BetA-induced cell death. This clearly established BetA-induced autophagy as a survival mechanism and indicates that BetA utilizes an as yet-undefined mechanism to kill cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Mitocôndrias/metabolismo , Triterpenos/farmacologia , Animais , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Necrose , Triterpenos Pentacíclicos , Transdução de Sinais/efeitos dos fármacos , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...