Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Frailty Sarcopenia Falls ; 7(2): 95-100, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35775090

RESUMO

We evaluated predictors of the Clinical Frailty Scale (CFS) scored by an interdisciplinary team (Home FIRsT) performing comprehensive geriatric assessment (CGA) in our Emergency Department (ED). This was a retrospective observational study (service evaluation) utilising ED-based CGA data routinely collected by Home FIRsT between January and October 2020. A linear regression model was computed to establish independent predictors of CFS. This was complemented by a classification and regression tree (CRT) to evaluate the main predictors. There were 799 Home FIRsT episodes, of which 740 were unique patients. The CFS was scored on 658 (89%) (median 4, range 1-8; mean age 81 years, 61% women). Independent predictors of higher CFS were older age (p<0.001), history of dementia (p<0.001), mobility (p≤0.007), disability (p<0.001), and higher acuity of illness (p=0.009). Disability and mobility were the main classifiers in the CRT. Results suggest appropriate CFS scoring informed by functional baseline.

2.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291515

RESUMO

Basal cell carcinoma (BCC) originate from Hedgehog/Patched signaling-activated epidermal stem cells. However, the chemically induced tumorigenesis of mice with a CD4Cre-mediated biallelic loss of the Hedgehog signaling repressor Patched also induces BCC formation. Here, we identified the cellular origin of CD4Cre-targeted BCC progenitors as rare Keratin 5+ epidermal cells and show that wildtype Patched offspring of these cells spread over the hair follicle/skin complex with increasing mouse age. Intriguingly, Patched mutant counterparts are undetectable in age-matched untreated skin but are getting traceable upon applying the chemical tumorigenesis protocol. Together, our data show that biallelic Patched depletion in rare Keratin 5+ epidermal cells is not sufficient to drive BCC development, because the spread of these cells is physiologically suppressed. However, bypassing the repression of Patched mutant cells, e.g., by exogenous stimuli, leads to an accumulation of BCC precursor cells and, finally, to tumor development.


Assuntos
Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Transformação Celular Neoplásica/genética , Mutação , Receptor Patched-1/genética , Fatores Etários , Animais , Carcinoma Basocelular/metabolismo , Suscetibilidade a Doenças , Células Epidérmicas/metabolismo , Células Epidérmicas/patologia , Imunofluorescência , Técnicas de Introdução de Genes , Genes Reporter , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Transgênicos , Receptor Patched-1/metabolismo , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia
3.
J Invest Dermatol ; 140(8): 1556-1565.e11, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31987884

RESUMO

We analyzed the role of WIF1 in normal and acanthotic epidermis of 12-O-tetradecanoylphorbol-13-acetate (TPA) or all-trans-retinoic acid (ATRA)-treated and basal cell carcinoma (BCC)-bearing mice. WIF1 protein is located in the follicular infundibulum and interfollicular epidermis (IFE) in murine back skin. Within the hyperplastic epidermis of TPA- or ATRA-treated or BCC-bearing murine skin, WIF1 and Keratin 10 overlap in Ki67⁻ suprabasal layers, while basal epidermal layers expressing Ki67, and BCCs expressing Wif1 mRNA, are free of WIF1 protein. This is similar in human skin, with the exception that WIF1 protein is found in single Ki67⁻ basal epidermal cells in normal skin and additionally in Ki67+ cells in acanthotic skin. Wif1-deficiency enhances acanthosis of the murine BCC-associated epidermis, which is accompanied by an increase of Ki67+ and of Sca-1+ basal cells. WIF1 overexpression in allografted BCC-derived keratinocytes prevents growth and keratinization, involving enhanced phosphorylation of protein kinase C and extracellular signal-regulated kinase 1 and arguably factors secreted by the in vivo environment. In summary, WIF1 protein marks suprabasal layers in the normal IFE. It is also present in the epidermis overlaying BCCs where it diminishes proliferation of basal cells and production of differentiating suprabasal cells. In addition, WIF1 can prevent proliferation and keratinization of BCC-related keratinocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Basocelular/patologia , Epiderme/patologia , Neoplasias Experimentais/patologia , Neoplasias Cutâneas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Basocelular/induzido quimicamente , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Epiderme/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Queratinócitos/patologia , Camundongos , Neoplasias Experimentais/induzido quimicamente , Cultura Primária de Células , Neoplasias Cutâneas/induzido quimicamente , Tamoxifeno/administração & dosagem , Tamoxifeno/toxicidade , Acetato de Tetradecanoilforbol/administração & dosagem , Acetato de Tetradecanoilforbol/toxicidade , Tretinoína/administração & dosagem , Tretinoína/toxicidade
4.
Angew Chem Int Ed Engl ; 58(25): 8362-8366, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-30968535

RESUMO

We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5-dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical-based, redox pathway involves the homolytic cleavage of H2 , in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.

5.
Biochemistry ; 58(18): 2362-2372, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964996

RESUMO

There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.


Assuntos
Membrana Celular/química , Flavina-Adenina Dinucleotídeo/análogos & derivados , Simulação de Dinâmica Molecular , Monoaminoxidase/química , Sítios de Ligação , Domínio Catalítico , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Monoaminoxidase/metabolismo , Oxirredução , Ligação Proteica
6.
Nat Commun ; 8(1): 358, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842561

RESUMO

Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.


Assuntos
Peroxidase/síntese química , Engenharia de Proteínas , Sítios de Ligação , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peroxidase/química , Especificidade por Substrato
7.
Biochem Soc Trans ; 44(3): 905-15, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284059

RESUMO

During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Membrana Transportadoras/metabolismo , Animais , Bactérias/metabolismo , Transporte Biológico , Eucariotos/metabolismo , Humanos , Conformação Molecular
8.
Biochem Soc Trans ; 43(5): 1023-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517918

RESUMO

ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Simulação de Dinâmica Molecular , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...