Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 18(8 Suppl): A177-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19475924

RESUMO

Clear Lake, California, USA, receives acid mine drainage and mercury (Hg) from the Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency (U.S. EPA) Superfund Site that was active intermittently from 1873 to 1957 and partially remediated in 1992. Mercury concentrations were analyzed primarily in four species of Clear Lake fishes: inland silversides (Menidia beryllina, planktivore), common carp (Cyprinus carpio, benthic scavenger/omnivore), channel catfish (Ictalurus punctatus, benthic omnivorous predator), and largemouth bass (Micropterus salmoides, piscivorous top predator). These data represent one of the largest fish Hg data sets for a single site, especially in California. Spatially, total Hg (TotHg) in silversides and bass declined with distance from the mine, indicating that the mine site represents a point source for Hg loading to Clear Lake. Temporally, fish Hg has not declined significantly over 12 years since mine site remediation. Mercury concentrations were variable throughout the study period, with no monotonic trends of increase or decrease, except those correlated with boom and bust cycles of an introduced fish, threadfin shad (Dorosoma petenense). However, stochastic events such as storms also influence juvenile largemouth bass Hg as evidenced during an acid mine drainage overflow event in 1995. Compared to other sites regionally and nationally, most fish in Clear Lake exhibit Hg concentrations similar to other Hg-contaminated sites, up to approximately 2.0 mg/kg wet mass (WM) TotHg in largemouth bass. However, even these elevated concentrations are less than would be anticipated from such high inorganic Hg loading to the lake. Mercury in some Clear Lake largemouth bass exceeded all human health fish consumption guidelines established over the past 25 years by the U.S. Food and Drug Administration (1.0 mg/kg WM), the National Academy of Sciences (0.5 mg/kg WM), and the U.S. EPA (0.3 mg/kg WM). Mercury in higher trophic level fishes exceeds ecotoxicological risk assessment estimates for concentrations that would be safe for wildlife, specifically the nonlisted Common Merganser and the recently delisted Bald Eagle. Fish populations of 11 out of 18 species surveyed exhibited a significant decrease in abundance with increasing proximity to the mine; this decrease is correlated with increasing water and sediment Hg. These trends may be related to Hg or other lake-wide gradients such as distribution of submerged aquatic vegetation.


Assuntos
Ecossistema , Peixes/metabolismo , Água Doce/química , Mercúrio/metabolismo , Mineração , Poluentes Químicos da Água/metabolismo , Animais , California , Mercúrio/química , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/química
2.
Ecol Appl ; 18(8 Suppl): A284-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19475930

RESUMO

Clear Lake, California, USA, is the site of the Sulphur Bank Mercury Mine, now a U.S. Environmental Protection Agency Superfund Site. Intermittent mining from 1873 to 1957 resulted in approximately 100 Mg of mercury (Hg) being deposited into the lake's ecosystem. Sediment cores to approximately 2.5 m depth (dated using 210Pb and 14C) represent approximately 3000 years of sedimentation. Clear Lake sediments have experienced Hg deposition from anthropogenic sources (mining) during historic times (to the mid-1900s) and geologic sources during prehistoric times (prior to the mid-1800s). This provides a unique opportunity to evaluate hypotheses relating to (1) the influence of the mine on Hg loading to the lake and (2) the potential upward mobilization of Hg by diagenetic processes proposed by some as an alternative explanation for increased Hg concentrations at the surface of the sediment column believed to be caused by increased global atmospheric deposition. Although Hg mining began in 1873, no significant evidence of anthropogenic Hg loading was detected in cores prior to open-pit mining ca. 1927, which also involved bulldozing mine waste rock and tailings into the lake. Exponential increases in total Hg (TotHg) and methylmercury (MeHg) were observed above the 1927 horizon, where estimated sedimentation rates were 2.2-20.4 mm/yr and peaks of both forms of Hg maintained vertical stability within the sediment column. Below the 1927 horizon, a slow increase in both TotHg and MeHg with depth was observed from approximately 1000 to 3000 years before present, where sedimentation rates ranged from approximately 0.6 to 2.0 mm/yr and elevated Hg profiles appear stable. Vertical stability of Hg in the shallow and deep sediment column suggests that both TotHg and MeHg do not undergo diagenetic upward mobilization within the sediment column under rapid or slow sedimentation rates. Because (1) these data were collected at a site with known anthropogenic and geologic sources and (2) regions of elevated Hg concentrations from both sources remain stable within the sediment column under very different sedimentation regimes, these results also support the hypothesis that elevated Hg at the surface of cores in other worldwide locations likely represents global atmospheric deposition rather than upward diagenetic mobilization.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , California , Ecossistema , Atividades Humanas , Mercúrio/química , Mercúrio/metabolismo , Mineração , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...