Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sports Sci ; 42(5): 392-403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574326

RESUMO

When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.


Assuntos
Dedos , Aprendizagem , Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Adulto Jovem , Masculino , Córtex Motor/fisiologia , Feminino , Aprendizagem/fisiologia , Dedos/fisiologia , Adulto , Destreza Motora/fisiologia , Imaginação/fisiologia , Desempenho Psicomotor/fisiologia
2.
Front Aging Neurosci ; 14: 1060791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570544

RESUMO

Background: Motor imagery practice (MIP) and anodal transcranial direct current stimulation (a-tDCS) are innovative methods with independent positive influence on motor sequence learning (MSL) in older adults. Objective: The present study investigated the effect of MIP combined with a-tDCS over the primary motor cortex (M1) on the learning of a finger tapping sequence of the non-dominant hand in healthy older adults. Methods: Thirty participants participated in this double-blind sham-controlled study. They performed three MIP sessions, one session per day over three consecutive days and a retention test 1 week after the last training session. During training / MIP, participants had to mentally rehearse an 8-element finger tapping sequence with their left hand, concomitantly to either real (a-tDCS group) or sham stimulation (sham-tDCS group). Before and after MIP, as well as during the retention test, participants had to physically perform the same sequence as fast and accurately as possible. Results: Our main results showed that both groups (i) improved their performance during the first two training sessions, reflecting acquisition/on-line performance gains, (ii) stabilized their performance from one training day to another, reflecting off-line consolidation; as well as after 7 days without practice, reflecting retention, (iii) for all stages of MSL, there was no significant difference between the sham-tDCS and a-tDCS groups. Conclusion: This study highlights the usefulness of MIP in motor sequence learning for older adults. However, 1.5 mA a-tDCS did not enhance the beneficial effects of MIP, which adds to the inconsistency of results found in tDCS studies. Future work is needed to further explore the best conditions of use of tDCS to improve motor sequence learning with MIP.

3.
Trials ; 22(1): 747, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702317

RESUMO

BACKGROUND: After a stroke, 80% of the chronic patients have difficulties to use their paretic upper limb (UL) in activities of daily life (ADL) even after rehabilitation. Virtual reality therapy (VRT) and anodal transcranial direct current stimulation (tDCS) are two innovative methods that have shown independently to positively impact functional recovery of the paretic UL when combined with conventional therapy. The objective of the project will be to evaluate the impact of adding anodal high-definition (HD)-tDCS during an intensive 3-week UL VRT and conventional therapy program on paretic UL function in chronic stroke. METHODS: The ReArm project is a quadruple-blinded, randomized, sham-controlled, bi-centre, two-arm parallel, and interventional study design. Fifty-eight chronic (> 3 months) stroke patients will be recruited from the Montpellier and Nimes University Hospitals. Patients will follow a standard 3-week in-patient rehabilitation program, which includes 13 days of VRT (Armeo Spring, 1 × 30 min session/day) and conventional therapy (3 × 30 min sessions/day). Twenty-nine patients will receive real stimulation (4x1 anodal HD-tDCS montage, 2 mA, 20 min) to the ipsilesional primary motor cortex during the VRT session and the other 29 patients will receive active sham stimulation (2 mA, 30 s). All outcome measures will be assessed at baseline, at the end of rehabilitation and again 3 months later. The primary outcome measure will be the wolf motor function test. Secondary outcomes will include measures of UL function (Box and Block Test), impairment (Fugl Meyer Upper Extremity), compensation (Proximal Arm Non-Use), ADL (Actimetry, Barthel Index). Other/exploratory outcomes will include pain, fatigue, effort and performance, kinematics, and motor cortical region activation during functional motor tasks. DISCUSSION: This will be the first trial to determine the impact of adding HD-tDCS during UL VRT and conventional therapy in chronic stroke patients. We hypothesize that improvements in UL function will be greater and longer-lasting with real stimulation than in those receiving sham. TRIAL REGISTRATION: The ReArm project was approved by The French Research Ethics Committee, (Comité de Protection des Personnes-CPP SUD-EST II, N°ID-RCB: 2019-A00506-51, http://www.cppsudest2.fr/ ). The ReArm project was registered on ClinicalTrials.gov ( NCT04291573 , 2nd March 2020.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Terapia de Exposição à Realidade Virtual , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Resultado do Tratamento , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...