Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2304650120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988470

RESUMO

Atmospheric formic acid is severely underpredicted by models. A recent study proposed that this discrepancy can be resolved by abundant formic acid production from the reaction (1) between hydroxyl radical and methanediol derived from in-cloud formaldehyde processing and provided a chamber-experiment-derived rate constant, k1 = 7.5 × 10-12 cm3 s-1. High-level accuracy coupled cluster calculations in combination with E,J-resolved two-dimensional master equation analyses yield k1 = (2.4 ± 0.5) × 10-12 cm3 s-1 for relevant atmospheric conditions (T = 260-310 K and P = 0-1 atm). We attribute this significant discrepancy to HCOOH formation from other molecules in the chamber experiments. More importantly, we show that reversible aqueous processes result indirectly in the equilibration on a 10 min. time scale of the gas-phase reaction [Formula: see text] (2) with a HOCH2OH to HCHO ratio of only ca. 2%. Although HOCH2OH outgassing upon cloud evaporation typically increases this ratio by a factor of 1.5-5, as determined by numerical simulations, its in-cloud reprocessing is shown using a global model to strongly limit the gas-phase sink and the resulting production of formic acid. Based on the combined findings in this work, we derive a range of 1.2-8.5 Tg/y for the global HCOOH production from cloud-derived HOCH2OH reacting with OH. The best estimate, 3.3 Tg/y, is about 30 times less than recently reported. The theoretical equilibrium constant Keq (2) determined in this work also allows us to estimate the Henry's law constant of methanediol (8.1 × 105 M atm-1 at 280 K).

2.
Ambio ; 52(8): 1373-1388, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37115429

RESUMO

The detection of anthraquinone in tea leaves has raised concerns due to a potential health risk associated with this species. This led the European Union to impose a maximum residue limit (MRL) of 0.02 mg/kg for anthraquinone in dried tea leaves. As atmospheric contamination has been identified as one of the possible sources of anthraquinone residue, this study investigates the contamination resulting from the deposition of atmospheric anthraquinone using a global chemical transport model that accounts for the emission, atmospheric transport, chemical transformation, and deposition of anthraquinone on the surface. The largest contribution to the global atmospheric budget of anthraquinone is from residential combustion followed by the secondary formation from oxidation of anthracene. Simulations suggest that atmospheric anthraquinone deposition could be a substantial source of the anthraquinone found on tea leaves in several tea-producing regions, especially near highly industrialized and populated areas of southern and eastern Asia. The high level of anthraquinone deposition in these areas may result in residues in tea products exceeding the EU MRL. Additional contamination could also result from local tea production operations.


Assuntos
Antraquinonas , Folhas de Planta , Antraquinonas/análise , Folhas de Planta/química , Contaminação de Alimentos/análise , Atmosfera , Chá/química
3.
Glob Chang Biol ; 28(5): 1809-1822, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34510653

RESUMO

Accurate monitoring of vegetation stress is required for better modelling and forecasting of primary production, in a world where heatwaves and droughts are expected to become increasingly prevalent. Variability in formaldehyde (HCHO) concentrations in the troposphere is dominated by local emissions of short-lived biogenic (BVOC) and pyrogenic volatile organic compounds. BVOCs are emitted by plants in a rapid protective response to abiotic stress, mediated by the energetic status of leaves (the excess of reducing power when photosynthetic light and dark reactions are decoupled, as occurs when stomata close in response to water stress). Emissions also increase exponentially with leaf temperature. New analytical methods for the detection of spatiotemporally contiguous extremes in remote-sensing data are applied here to satellite-derived atmospheric HCHO columns. BVOC emissions are shown to play a central role in the formation of the largest positive HCHO anomalies. Although vegetation stress can be captured by various remotely sensed quantities, spaceborne HCHO emerges as the most consistent recorder of vegetation responses to the largest climate extremes, especially in forested regions.


Assuntos
Clima , Compostos Orgânicos Voláteis , Secas , Florestas , Formaldeído
4.
J Geophys Res Atmos ; 126(8): e2020JD034213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34230871

RESUMO

We use the global Community Earth System Model to investigate the response of secondary pollutants (ozone O3, secondary organic aerosols SOA) in different parts of the world in response to modified emissions of primary pollutants during the COVID-19 pandemic. We quantify the respective effects of the reductions in NOx and in volatile organic carbon (VOC) emissions, which, in most cases, affect oxidants in opposite ways. Using model simulations, we show that the level of NOx has been reduced by typically 40% in China during February 2020 and by similar amounts in many areas of Europe and North America in mid-March to mid-April 2020, in good agreement with space and surface observations. We show that, relative to a situation in which the emission reductions are ignored and despite the calculated increase in hydroxyl and peroxy radicals, the ozone concentration increased only in a few NOx-saturated regions (northern China, northern Europe, and the US) during the winter months of the pandemic when the titration of this molecule by NOx was reduced. In other regions, where ozone is NOx-controlled, the concentration of ozone decreased. SOA concentrations decrease in response to the concurrent reduction in the NOx and VOC emissions. The model also shows that atmospheric meteorological anomalies produced substantial variations in the concentrations of chemical species during the pandemic. In Europe, for example, a large fraction of the ozone increase in February 2020 was associated with meteorological anomalies, while in the North China Plain, enhanced ozone concentrations resulted primarily from reduced emissions of primary pollutants.

5.
Phys Chem Chem Phys ; 20(10): 6970-6979, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29465129

RESUMO

In this work, we theoretically elucidated the mechanism and predicted the major products of the photolysis of α-hydroperoxycarbonyls, known to be products of the atmospheric oxidation of biogenic volatile organic compounds (BVOC) and components of secondary organic aerosol (SOA) in rural and remote areas. Using 2-hydroperoxypropanal OCHCH(OOH)CH3 as a model compound, we show that the likely major photolysis mechanism is a fast 1,5 H-shift in the initially excited singlet S1 state followed by spontaneous elimination of singlet oxygen to yield an enol HOCH[double bond, length as m-dash]CHCH3, while intersystem crossing (ISC) to the triplet T1 state and C-C scission into HC˙O + HOOC˙HCH3 followed by expulsion of a hydroxyl radical from the unstable HOOC˙HCH3 is another product channel. The direct S1 reaction was found to occur at such a high rate that the quantum yield in atmospheric conditions is expected to approach unity. In the atmosphere, the enol should generally react with OH radicals or tautomerize into the more stable carbonyl O[double bond, length as m-dash]CH-CH2CH3. Vinylalcohol is shown to be a major end product of the photolysis of hydroperoxyacetaldehyde, an isoprene oxidation product. Taking into account also the important enhancement of the absorption cross sections over those of the constituent monofunctional compounds as observed for the analogous ß-ketohydroperoxides, (F. Jorand et al., J. Photochem. Photobiol. A: Chem., 2000, 134, 119-125) the atmospheric photolysis rate of α-hydroperoxycarbonyls was estimated to be in the range of (1 to 5) × 10-4 s-1, generally faster than the rate of their OH reactions.

6.
Phys Chem Chem Phys ; 19(13): 9096-9106, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28317054

RESUMO

In this work we identified and theoretically quantified two photolysis mechanisms of HPALDs (hydroperoxy aldehydes) that result from the isomerization of peroxy radicals in the atmospheric oxidation of isoprene at low/moderate NOx. As a first photolysis mechanism, we show that a fraction of the initially excited S1-state HPALDs isomerizes by a near-barrierless 1,5 H-shift at a rate approaching 1012 s-1 - competing with the ∼equally fast intersystem crossing to the T2 triplet state - forming an unstable biradical that spontaneously expels an OH (hydroxyl) radical. A second mechanism is shown to proceed through the activated T2 triplet biradical - formed from S1 - undergoing a concerted ring-closure and OH-expulsion, yielding an oxiranyl-type co-product radical that quickly ring-opens to enoxy radicals. In both mechanisms, subsequent chemistry of the co-product radicals yields additional first-generation OH. The combined HPALD-photolysis quantum yield by these two mechanisms - which may not be the only photolysis routes - is estimated at 0.55 and the quantum yield of OH generation at 0.9, in fair accordance with experimental data on an HPALD proxy (Wolfe et al., Phys. Chem. Chem. Phys., 2012, 14, 7276-7286).

7.
Nat Commun ; 7: 13213, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748363

RESUMO

Methyl peroxy, a key radical in tropospheric chemistry, was recently shown to react with the hydroxyl radical at an unexpectedly high rate. Here, the molecular reaction mechanisms are elucidated using high-level quantum chemical methodologies and statistical rate theory. Formation of activated methylhydrotrioxide, followed by dissociation into methoxy and hydroperoxy radicals, is found to be the main reaction pathway, whereas methylhydrotrioxide stabilization and methanol formation (from activated and stabilized methylhydrotrioxide) are viable minor channels. Criegee intermediate formation is found to be negligible. Given the theoretical uncertainties, useful constraints on the yields are provided by atmospheric methanol measurements. Using a global chemistry-transport model, we show that the only explanation for the high observed methanol abundances over remote oceans is the title reaction with an overall methanol yield of ∼30%, consistent with the theoretical estimates given their uncertainties. This makes the title reaction a major methanol source (115 Tg per year), comparable to global terrestrial emissions.

8.
J Phys Chem Lett ; 6(20): 4005-11, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26722769

RESUMO

The atmospheric oxidation of vinyl alcohol (VA) produced by photoisomerization of acetaldehyde (AA) is thought to be a source of formic acid (FA). Nevertheless, a recent theoretical study predicted a high rate coefficient k1(298 K) of ≈10(-14) cm(3) molecule(-1) s(-1) for the FA-catalyzed tautomerization reaction 1 of VA back into AA, which suggests that FA buffers its own production from VA. However, the unusually high frequency factor implied by that study prompted us to reinvestigate reaction 1 . On the basis of a high-level ab initio potential energy profile, we first established that transition state theory is applicable, and derived a k1(298 K) of only ≈2 × 10(-20) cm(3) molecule(-1) s(-1), concluding that the reaction is negligible. Instead, we propose and rationalize another important VA sink: its uptake by aqueous aerosol and cloud droplets followed by fast liquid-phase tautomerization to AA; global modeling puts the average lifetime by this sink at a few hours, similar to oxidation by OH.

9.
J Phys Chem A ; 118(38): 8625-43, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25010574

RESUMO

The Leuven isoprene mechanism, proposed earlier to aid in rationalizing the unexpectedly high hydroxyl radical (OH) concentrations in isoprene-rich, low-nitric-oxide (NO) regions ( Peeters ; et al. Phys. Chem. Chem. Phys . 2009 , 11 , 5935 ), is presented in an upgraded and extended version, LIM1. The kinetics of the crucial reactions in the proposed isoprene-peroxy radical interconversion and isomerization pathways are re-evaluated theoretically, on the basis of energy barriers computed at the much higher CCSD(T)/aug-cc-pVTZ//QCISD/6-311G(d,p) level of theory, and using multiconformer partition functions obtained at the M06-2X/6-311++G(3df,2p) level that, different from the B3LYP level used in our earlier work, accounts for the crucial London dispersion effects in the H-bonded systems involved. The steady-state fraction of the specific Z-δ-OH-peroxy radical isomers/conformers that can isomerize by a 1,6-H shift is shown to be largely governed by hydrogen-bond strengths, whereas their isomerization itself is found to occur quasi-exclusively by hydrogen atom tunneling. The isomer-specific Z-δ-OH-peroxy 1,6-H-shift rate coefficients are predicted to be of the order of 1 s(-1) at 298 K, but the experimentally accessible bulk rate coefficients, which have to be clearly distinguished from the former, are 2 orders of magnitude lower due to the very low Z-δ-OH-peroxy steady-state fractions that are only around or below 0.01 at low to moderate NO and depend on the peroxy lifetime. Two pathways subsequent to the peroxy radical 1,6-H shift are identified, the earlier predicted route yielding the photolabile hydroperoxy-methylbutenals (HPALDs), and a second, about equally important path, to dihydroperoxy-carbonyl peroxy radicals (di-HPCARP). Taking this into account, our predicted bulk peroxy isomerization rate coefficients are about a factor 1.8 higher than the available experimental results for HPALD production ( Crounse ; et al. Phys. Chem. Chem. Phys. 2011 , 13 , 13607 ), which is within the respective uncertainty margins. We also show that the experimental temperature dependence of the HPALD production rates as well as the observed kinetic isotope effect for per-deuterated isoprene support quantitatively our theoretical peroxy interconversion rates. Global modeling implementing LIM1 indicates that on average about 28% of the isoprene peroxys react via the 1,6-H-shift isomerization route, representing 100-150 Tg carbon per year. The fast photolysis of HPALDs we proposed earlier as primary OH regeneration mechanism ( Peeters and Muller . Phys. Chem. Chem. Phys . 2010 , 12 , 14227 ) found already experimental confirmation ( Wolfe ; et al. Phys. Chem. Chem. Phys. 2012 , 14 , 7276 ); based on further theoretical work in progress, reaction schemes are presented of the oxy coproduct radicals from HPALD photolysis and of the di-HPCARP radicals from the second pathway following peroxy isomerization that are both expected to initiate considerable additional OH recycling.


Assuntos
Butadienos/química , Hemiterpenos/química , Hidrogênio/química , Radical Hidroxila/química , Pentanos/química , Teoria Quântica , Ligação de Hidrogênio , Estrutura Molecular , Oxirredução
10.
Anal Chim Acta ; 795: 44-51, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23998536

RESUMO

Grapevine is of worldwide economic importance due to wine production. However, this culture is often affected by pathogens causing severe harvest losses. Understanding host-pathogen relationships may be a key to solve this problem. In this paper, we evaluate the direct flow injection by electrospray - Fourier transform ion cyclotron resonance mass spectrometry (MS) of leaf extracts as a rapid method for the study of grapevine response to downy mildew (Plasmopara viticola) attack. The comparison of MS profiles obtained from control and infected leaves of different levels of resistant grapevines highlights several classes of metabolites (mainly saccharides, acyl lipids, hydroxycinnamic acids derivatives and flavonoids) which are identified using high resolution MS and tandem MS (MS/MS). Statistical analyses of 19 markers show a clear segregation between inoculated and healthy samples. This study points out relative high levels of disaccharides, acyl lipids and glycerophosphoinositol in inoculated samples. Sulfoquinovosyl diacylglycerols also emerge as possible metabolites involved in plant defense.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Vitis/metabolismo , Glicolipídeos/química , Íons/química , Peronospora/isolamento & purificação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Análise de Componente Principal , Vitis/microbiologia
11.
Rapid Commun Mass Spectrom ; 25(13): 1881-92, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21638364

RESUMO

Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage.


Assuntos
Mapeamento de Peptídeos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Bovinos , Ácidos Cumáricos/química , Análise de Fourier , Gentisatos/química , Dados de Sequência Molecular , Peso Molecular , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
12.
Talanta ; 84(1): 133-40, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21315910

RESUMO

Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste leachates.

13.
Phys Chem Chem Phys ; 12(42): 14227-35, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20882226

RESUMO

A consistent body of experimental evidence from work of other groups is presented in support of the novel, theoretically based, isoprene oxidation mechanism we recently proposed to rationalize the unexpectedly high OH concentrations observed over areas with high isoprene emissions. Some explicit or implicit criticisms on the new mechanism are addressed. A particular photochemical mechanism is newly proposed for the OH-regenerating photolysis of the crucial hydroperoxy-methyl-butenals (HPALDs), formed by isomerisation of the initial isoprene hydroxy-peroxy radicals, that rationalizes a quantum yield close to 1. A similar photolysis mechanism of the resulting photolabile peroxy-acid-aldehydes (PACALDs) is shown to generate ample additional OH. Global modeling demonstrates the major importance of the new chemistry for the oxidizing capacity of the atmosphere over continents. The globally averaged yield of the HPALDs in the oxidation of isoprene by OH is estimated to be of the order of 0.6. The isomerisation reactions of isoprene peroxy radicals are found to result in modelled [OH] increases in the planetary boundary layer by up to a factor of 3, in agreement with the reported observations as in the Amazon basin.

14.
Rapid Commun Mass Spectrom ; 24(3): 335-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20049886

RESUMO

Analysis of grapevine phytoalexins at the surface of Vitis vinifera leaves has been achieved by laser desorption/ionisation time-of-flight mass spectrometry (LDI-ToFMS) without matrix deposition. This simple and rapid sampling method was successfully applied to map small organic compounds at the surface of grapevine leaves. It was also demonstrated that the laser wavelength is a highly critical parameter. Both 266 and 337 nm laser wavelengths were used but the 266 nm wavelength gave increased spatial resolution and better sensitivity for the detection of the targeted metabolites (resveratrol and linked stilbene compounds). Mass spectrometry imaging of grapevine Cabernet Sauvignon leaves revealed specific locations with respect to Plasmopara viticola pathogen infection or light illumination.


Assuntos
Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estilbenos/análise , Vitis/química , Folhas de Planta/metabolismo , Resveratrol , Sensibilidade e Especificidade , Estilbenos/metabolismo , Vitis/metabolismo
15.
Forensic Sci Int ; 196(1-3): 128-9, 2010 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-20096512

RESUMO

On March 2007, a police officer (46-year-old man) and a clerk (37-year-old woman) were arrested and subjected to investigation on the charges of drugs of abuse trafficking. The loving couple was exploiting their administrative positions to make money with the resale of seized drugs. The laboratory was requested to analyse their hair for drugs of abuse. Hair of the 2 subjects tested positive for heroin by GC-MS. A few days later, analysis of hair obtained from 11 other police officers of the same unit was requested, in order to compare the results, as external contamination was proposed to account for the positive results. The aim of the investigations was to demonstrate that passive contamination could not occur for persons dealing every day with drugs of abuse with minimal caution and hygiene, and that the measured concentrations in the arrested subjects correspond to personal abuse. All the narcotic team tested negative, irrespective of the compound.


Assuntos
Cabelo/química , Dependência de Heroína/diagnóstico , Heroína/análise , Entorpecentes/análise , Polícia , Adulto , Biomarcadores/análise , Codeína/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Morfina/análise , Derivados da Morfina/análise , Exposição Ocupacional
16.
Rapid Commun Mass Spectrom ; 23(6): 885-98, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19224526

RESUMO

Five well-known active naphtodianthrone constituents of Hypericum perforatum (St John's Wort) extracts have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) and ESI-FTICRMSn. The studied compounds were hypericin, pseudohypericin, protohypericin, protopseudohypericin (biosynthetic precursors of the two former compounds, respectively) and isopseudohypericin (alkaline degradation product of pseudohypericin). Dissociation mass spectrometry measurements performed on the [M-H]- ion presented a variable efficiency as a function of the used activation mode. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) only led to a restricted number of fragment ions. In contrast, IRMPD ensured the detection of numerous product ions. Ions detected in ESI-FTICRMS and ESI-FTICRMSn experiments were measured with a very high mass accuracy (typically mass error is lower than 0.5 mDa at m/z close to 500) that allowed unambiguous formulae to be assigned to each signal observed in a mass spectrum. In spite of similar structures, specific fragmentation patterns were observed for the different compounds investigated. This study may be useful in the future to characterize in natural extracts these compounds (or derivatives of these compounds) by liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments by considering the MS/MS transitions highlighted in this paper.


Assuntos
Antracenos/análise , Antracenos/química , Hypericum/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fótons
17.
Ther Drug Monit ; 31(1): 131-4, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19155965

RESUMO

Saliva or "oral fluid" has been presented as an alternative matrix to establish drug exposure. The noninvasive collection of an oral fluid sample, which is relatively easy to perform and can be achieved under close supervision, is one of the most important benefits when testing for driving under the influence of drugs. Moreover, the detection of Delta9-tetrahydrocannabinol (THC) in oral fluid is a better indication of recent use than a positive urine test, so there is a higher probability that the subject is experiencing pharmacological effects at the time of sampling. Twenty-five subjects (5 free and 20 addicts from a heroin detoxification center) were included in a study to evaluate the potential application of a new device, the Cozart DDSV (drug detection system visual), to detect cannabis in oral fluid. The time cannabis was last smoked was recorded by the medical staff after interview with each subject. Samples were collected with the Cozart DDS Oral Swab and diluted with the Cozart DDS buffer as proposed by the manufacturer. The Cozart DDSV test was conducted on site at the time of collection, and the remainder of the sample retained for confirmation analysis by gas chromatography with mass spectrometry (GC/MS) after methylation of THC (limit of quantitation 0.5 ng/mL). All 25 samples were analyzed by GC/MS. On-site results were obtained within 10 minutes. The 5 drug-free subjects were negative for cannabis, irrespective of the method. From the 20 subjects declaring that they had smoked cannabis between 30 minutes and 24 hours previously, the DDSV device identified 8 positive subjects (with THC concentrations in the buffer in the range 15-219 ng/mL), whereas 18 subjects tested positive using GC/MS. THC concentrations in the Cozart buffer using GC/MS analysis ranged from 0.7 to 219 ng/mL. These concentrations represent about one third the authentic THC concentrations in oral fluid due to the dilution by the liquid of the device. Given the results, the DDSV device was considered as an acceptable tool to detect cannabis abuse in oral fluid within a period of 2-3 hours after smoking.


Assuntos
Fumar Maconha , Detecção do Abuso de Substâncias/instrumentação , Adulto , Líquidos Corporais/química , Calibragem , Dronabinol/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Indicadores e Reagentes , Masculino , Metilação , Reprodutibilidade dos Testes , Saliva/química , Manejo de Espécimes
18.
Anal Bioanal Chem ; 392(7-8): 1335-44, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18841351

RESUMO

The class of antimetabolite chemotherapeutical agents has been used to treat cancers in humans for almost 50 years and gives significant results by binding dihydrofolate reductase (DHFR), a key enzyme in DNA synthesis. Therefore, finding new active compounds inhibiting DNA synthesis through their binding to DHFR is of prime interest. The aim of this work is to describe a protocol designed to study the binding of compounds to DHFR. This screening protocol involves matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) detection of target-bound compounds. Firstly, a screening protocol is developed and proves to be a simple, fast, and specific method to characterize the binding capability of a compound. Secondly, the possibility of determining the relative affinities of DHFR-binding compounds by comparing MALDI-TOFMS data is discussed. A ratio is calculated for a compound X such as R(X) = A.I.(denaturation)(X)/A.I.(direct)(X) (where AI(direct) and AI(denaturation) are the average absolute intensities of a binding compound X before and after denaturation of DHFR). It is shown that by using this protocol, one can characterize the strength of the binding of different compounds. These two strategies are then applied to screen green tea (Camellia sinensis) extracts for DHFR-binding compounds, and epigallocatechin gallate is shown to be an active compound with a relative affinity between those of pyrimethamine and methotrexate.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Antagonistas do Ácido Fólico/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tetra-Hidrofolato Desidrogenase/química , Antineoplásicos/química , Catequina/análogos & derivados , Ligação Proteica , Chá
19.
J Am Soc Mass Spectrom ; 19(4): 488-501, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18258451

RESUMO

Laser ablation of transition-metal oxides have been investigated to better understand the formation processes of inorganic cluster ions. The study of binary oxide mixtures and the relative distribution of the ions produced suggest three salient mechanisms that occur after laser/matter interaction, that function to produce the observed ensemble of ionic species. Molecular recombination reactions, unimolecular dissociation processes, emission of small neutrals, including molecular oxygen from transition-metal oxide samples, or from species expelled in gas phase appear to be a significant mechanism, especially under high laser irradiance conditions. These processes are used to propose a set of pathways to rationalize the envelope of ionic clusters formed under photon bombardment.

20.
Drug Metab Dispos ; 36(2): 260-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17962374

RESUMO

Carboxylic acid-containing drugs are metabolized mainly through the formation of glucuronide and coenzyme A esters. These conjugates have been suspected to be responsible for the toxicity of several nonsteroidal anti-inflammatory drugs because of the reactivity of the electrophilic ester bond. In the present study we investigated the reactivity of ketoprofenyl-acylglucuronide (KPF-OG) and ketoprofenyl-acyl-coenzyme A (KPF-SCoA) toward cytosolic rat liver glutathione S-transferases (GST). We observed that KPF-SCoA, but not KPF-OG inhibited the conjugation of 1-chloro-2,4-dinitrobenzene and 4-nitroquinoline N-oxide catalyzed by both purified cytosolic rat liver GST and GST from FAO and H5-6 rat hepatoma cell lines. Photoaffinity labeling with KPF-SCoA suggested that the binding of this metabolite may overlap the binding site of 4-methylumbelliferone sulfate. Furthermore, high-performance liquid chromatography and mass spectrometry analysis showed that both hydrolysis and transacylation reactions were observed in the presence of GST and glutathione. The formation of ketoprofenyl-S-acyl-glutathione could be kinetically characterized (apparent K(m) = 196.0 +/- 70.6 microM). It is concluded that KPF-SCoA is both a GST inhibitor and a substrate of a GST-dependent transacylation reaction. The reactivity and inhibitory potency of thioester CoA derivatives toward GST may have potential implications on the reported in vivo toxicity of some carboxylic acid-containing drugs.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Coenzima A/metabolismo , Glucuronídeos/metabolismo , Glutationa Transferase/antagonistas & inibidores , Cetoprofeno/metabolismo , Animais , Linhagem Celular Tumoral , Citosol/enzimologia , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/enzimologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...