Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 14: 437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547357

RESUMO

Neuromorphic systems are designed with careful consideration of the physical properties of the computational substrate they use. Neuromorphic engineers often exploit physical phenomena to directly implement a desired functionality, enabled by "the isomorphism between physical processes in different media" (Douglas et al., 1995). This bottom-up design methodology could be described as matching computational primitives to physical phenomena. In this paper, we propose a top-down counterpart to the bottom-up approach to neuromorphic design. Our top-down approach, termed "bias matching," is to match the inductive biases required in a learning system to the hardware constraints of its implementation; a well-known example is enforcing translation equivariance in a neural network by tying weights (replacing vector-matrix multiplications with convolutions), which reduces memory requirements. We give numerous examples from the literature and explain how they can be understood from this perspective. Furthermore, we propose novel network designs based on this approach in the context of collaborative filtering. Our simulation results underline our central conclusions: additional hardware constraints can improve the predictions of a Machine Learning system, and understanding the inductive biases that underlie these performance gains can be useful in finding applications for a given constraint.

2.
IEEE Trans Pattern Anal Mach Intell ; 42(7): 1642-1653, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305899

RESUMO

Camera sensors rely on global or rolling shutter functions to expose an image. This fixed function approach severely limits the sensors' ability to capture high-dynamic-range (HDR) scenes and resolve high-speed dynamics. Spatially varying pixel exposures have been introduced as a powerful computational photography approach to optically encode irradiance on a sensor and computationally recover additional information of a scene, but existing approaches rely on heuristic coding schemes and bulky spatial light modulators to optically implement these exposure functions. Here, we introduce neural sensors as a methodology to optimize per-pixel shutter functions jointly with a differentiable image processing method, such as a neural network, in an end-to-end fashion. Moreover, we demonstrate how to leverage emerging programmable and re-configurable sensor-processors to implement the optimized exposure functions directly on the sensor. Our system takes specific limitations of the sensor into account to optimize physically feasible optical codes and we evaluate its performance for snapshot HDR and high-speed compressive imaging both in simulation and experimentally with real scenes.

3.
Faraday Discuss ; 213(0): 487-510, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30357205

RESUMO

Memristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility, they are characterized by their computationally relevant physical properties, such as their state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a spiking neural network architecture that supports the use of memristive devices as synaptic elements and propose mixed-signal analog-digital interfacing circuits that mitigate the effect of variability in their conductance values and exploit their variability in the switching threshold for implementing stochastic learning. The effect of device variability is mitigated using pairs of memristive devices configured in a complementary push-pull mechanism and interfaced to a current-mode normalizer circuit. The stochastic learning mechanism is obtained by mapping the desired change in synaptic weight into a corresponding switching probability that is derived from the intrinsic stochastic behavior of memristive devices. We demonstrate the features of the CMOS circuits and apply the architecture proposed to a standard neural network hand-written digit classification benchmark based on the MNIST data-set. We evaluate the performance of the approach proposed in this benchmark using behavioral-level spiking neural network simulation, showing both the effect of the reduction in conductance variability produced by the current-mode normalizer circuit and the increase in performance as a function of the number of memristive devices used in each synapse.


Assuntos
Eletrônica/instrumentação , Redes Neurais de Computação , Algoritmos , Simulação por Computador , Desenho de Equipamento , Armazenamento e Recuperação da Informação , Processos Estocásticos
4.
Nat Commun ; 6: 8941, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26642827

RESUMO

Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.

5.
Neural Comput ; 27(12): 2510-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26496042

RESUMO

Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multistability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework that can be used to model other perceptual inference phenomena.


Assuntos
Ritmo Gama/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Simulação por Computador , Humanos , Redes Neurais de Computação , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...