Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6168-6177, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439326

RESUMO

In situ tunable photonic filters and memories are important for emerging quantum and classical optics technologies. However, most photonic devices have fixed resonances and bandwidths determined at the time of fabrication. Here we present an in situ tunable optical resonator on thin-film lithium niobate. By leveraging the linear electro-optic effect, we demonstrate widely tunable control over resonator frequency and bandwidth on two different devices. We observe up to ∼50 × tuning in the bandwidth over ∼50 V with linear frequency control of ∼230 MHz/V. We also develop a closed-form model predicting the tuning behavior of the device. This paves the way for rapid phase and amplitude control over light transmitted through our device.

2.
Sci Adv ; 10(11): eadl1814, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478618

RESUMO

Quantum optical technologies promise advances in sensing, computing, and communication. A key resource is squeezed light, where quantum noise is redistributed between optical quadratures. We introduce a monolithic, chip-scale platform that exploits the χ(2) nonlinearity of a thin-film lithium niobate (TFLN) resonator device to efficiently generate squeezed states of light. Our system integrates all essential components-except for the laser and two detectors-on a single chip with an area of one square centimeter, reducing the size, operational complexity, and power consumption associated with conventional setups. Using the balanced homodyne measurement subsystem that we implemented on the same chip, we measure a squeezing of 0.55 decibels and an anti-squeezing of 1.55 decibels. We use 20 milliwatts of input power to generate the parametric oscillator pump field by using second harmonic generation on the same chip. Our work represents a step toward compact and efficient quantum optical systems posed to leverage the rapid advances in integrated nonlinear and quantum photonics.

3.
Opt Express ; 30(13): 23177-23186, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225003

RESUMO

Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm2. Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 × 105. This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.

4.
Stat Med ; 41(18): 3511-3526, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35567357

RESUMO

The continuous evolution of metabolomics over the past two decades has stimulated the search for metabolic biomarkers of many diseases. Metabolomic data measured from urinary samples can provide rich information of the biological events triggered by organ rejection in pediatric kidney transplant recipients. With additional validation, metabolic markers can be used to build clinically useful diagnostic tools. However, there are many methodological steps ranging from data processing to modeling that can influence the performance of the resulting metabolomic classifiers. In this study we focus on the comparison of various classification methods that can handle the complex structure of metabolomic data, including regularized classifiers, partial least squares discriminant analysis, and nonlinear classification models. We also examine the effectiveness of a physiological normalization technique widely used in the clinical and biochemical literature but not extensively analyzed and compared in urine metabolomic studies. While the main objective of this work is to interrogate metabolomic data of pediatric kidney transplant recipients to improve the diagnosis of T cell-mediated rejection (TCMR), we also analyze three independent datasets from other disease conditions to investigate the generalizability of our findings.


Assuntos
Transplante de Rim , Biomarcadores/urina , Criança , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...