Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14721, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266499

RESUMO

Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.

2.
Phys Rev Lett ; 119(26): 266802, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328725

RESUMO

The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional sp-bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

3.
Phys Rev Lett ; 107(4): 047401, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21867042

RESUMO

Strong fluence dependence of photodesorption cross sections is observed in femtosecond laser photodesorption of NO from (NO)2 on silver nanoparticles, in contrast to femtosecond photodesorption on bulk metals. The time scale of excitation buildup is found to be equal or less than the pulse duration of ∼100 fs; NO translational energies are independent of fluence and pulse duration. We propose a nanoparticle-specific nonlinear mechanism in which, due to confinement, strongly nonthermal hot-electron distributions are maintained during the femtosecond pulses, enhancing the normal desorption pathway.

4.
J Chem Phys ; 134(16): 164702, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21528976

RESUMO

The translational and internal state energy distributions of NO desorbed by laser light (2.3, 3.5, and 4.7 eV) from adsorbed (NO)(2) on Ag nanoparticles (NPs) (mean diameters, D = 4, 8, and 11 nm) have been investigated by the (1 + 1) resonance enhanced multiphoton ionization technique. For comparison, the same experiments have also been carried out on Ag(111). Detected NO molecules are hyperthermally fast and both rotationally and vibrationally hot, with temperatures well above the sample temperature. The translational and rotational excitations are positively correlated, while the vibrational excitation is decoupled from the other two degrees of freedom. Most of the energy content of the desorbing NO is contained in its translation. The translational and internal energy distributions of NO molecules photodesorbed by 2.3, 3.5, and in part also 4.7 eV light are approximately constant as a function of Ag NPs sizes, and they are the same on Ag(111). This suggests that for these excitations a common mechanism is operative on the bulk single crystal and on NPs, independent of the size regime. Notably, despite the strongly enhanced cross section seen on NP at 3.5 eV excitation energy in p-polarization, i.e., in resonance with the plasmon excitation, the mechanism is also unchanged. At 4.7 eV and for small particles, however, an additional desorption channel is observed which results in desorbates with higher energies in all degrees of freedom. The results are well compatible with our earlier measurements of size-dependent translational energy distributions. We suggest that the broadly constant mechanism over most of the investigated range runs via a transient negative ion state, while at high excitation energy and for small particles the transient state is suggested to be a positive ion.

5.
Phys Rev Lett ; 101(14): 146103, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851546

RESUMO

NO dimers adsorbed on alumina supported silver nanoparticles (Ag NPs, radii R approximately 1-6 nm) show decreasing desorption temperatures and complex behavior of photoinduced desorption with decreasing NP size. In particular, for resonant excitation of the (1,0) Mie plasmon at 3.5 eV the photoinduced desorption cross section increases with 1/R, showing a pronounced enhancement (40 times) at R approximately 2.5 nm compared to Ag(111). At 4.7 eV the translational temperature of photodesorbed NO increases strongly with 1/R. We discuss these trends and peculiarities in terms of the size-dependent properties of the Ag NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...