Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 13(10): 11008-11021, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31503443

RESUMO

Overexpressed extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) limits drug penetration into the tumor and is associated with poor prognosis. Here, we demonstrate that a pretreatment based on a proteolytic-enzyme nanoparticle system disassembles the dense PDAC collagen stroma and increases drug penetration into the pancreatic tumor. More specifically, the collagozome, a 100 nm liposome encapsulating collagenase, was rationally designed to protect the collagenase from premature deactivation and prolonged its release rate at the target site. Collagen is the main component of the PDAC stroma, reaching 12.8 ± 2.3% vol in diseased mice pancreases, compared to 1.4 ± 0.4% in healthy mice. Upon intravenous injection of the collagozome, ∼1% of the injected dose reached the pancreas over 8 h, reducing the level of fibrotic tissue to 5.6 ± 0.8%. The collagozome pretreatment allowed increased drug penetration into the pancreas and improved PDAC treatment. PDAC tumors, pretreated with the collagozome followed by paclitaxel micelles, were 87% smaller than tumors pretreated with empty liposomes followed by paclitaxel micelles. Interestingly, degrading the ECM did not increase the number of circulating tumor cells or metastasis. This strategy holds promise for degrading the extracellular stroma in other diseases as well, such as liver fibrosis, enhancing tissue permeability before drug administration.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Colagenases/farmacologia , Nanopartículas/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colágeno/química , Colágeno/genética , Colagenases/química , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Fibrose/tratamento farmacológico , Fibrose/patologia , Fibrose/prevenção & controle , Humanos , Lipossomos/química , Lipossomos/farmacologia , Camundongos , Nanopartículas/uso terapêutico , Paclitaxel/química , Paclitaxel/farmacologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Microambiente Tumoral/efeitos dos fármacos
2.
Carcinogenesis ; 39(10): 1283-1291, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102336

RESUMO

Previous studies revealed that progression of multiple myeloma (MM) is associated with downregulation of semaphorin-3A (sema3A) expression in bone marrow endothelial cells. We therefore determined if serum sema3A concentrations are correlated with MM progression and if sema3A can affect MM progression. We find that the concentration of sema3A in sera of MM patients is strongly reduced and that the decrease is correlated with disease progression. A similar depletion is found in patients having acute myeloid leukemia and acute lymphoblastic leukemia but not in cancer forms that do not involve the bone marrow such as in colon cancer. Expression of a modified sema3A [furin-resistant sema3A (FR-sema3A)] stabilized against cleavage by furin-like proprotein convertases in CAG MM cells did not affect their behavior in-vitro. CAG cells injected into the tail vein of severe combined immunodeficient (SCID) mice home to the bone marrow and proliferate, mimicking MM disease progression. Disease progression in mice injected with CAG cells expressing FR-sema3A was inhibited, resulting in prolonged survival and a lower incidence of bone lesions. Histological examination and fluorescence-activated cell sorting analysis revealed that FR-sema3A expression reduced the infiltration of the CAG cells into the bone marrow, reduced bone marrow necrosis and reduced angiogenesis induced by the MM cells in the bone marrow. Our results suggest that measurement of sema3A serum concentrations may be of use for the diagnosis and for the monitoring of malignancies of the bone marrow such as MM. Furthermore, our results suggest that FR-sema3A may perhaps find use as an inhibitor of MM disease progression.


Assuntos
Medula Óssea/patologia , Mieloma Múltiplo/sangue , Semaforina-3A/sangue , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID/metabolismo , Mieloma Múltiplo/patologia , Semaforina-3A/metabolismo
3.
J Cell Sci ; 131(9)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29661844

RESUMO

Class-3 semaphorin guidance factors bind to receptor complexes containing neuropilin and plexin receptors. A semaphorin may bind to several receptor complexes containing somewhat different constituents, resulting in diverse effects on cell migration. U87MG glioblastoma cells express both neuropilins and the four class-A plexins. Here, we show that these cells respond to Sema3A or Sema3B by cytoskeletal collapse and cell contraction but fail to contract in response to Sema3C, Sema3D, Sema3G or Sema3E, even when class-A plexins are overexpressed in the cells. In contrast, expression of recombinant plexin-D1 enabled contraction in response to these semaphorins. Surprisingly, unlike Sema3D and Sema3G, Sema3C also induced the contraction and repulsion of plexin-D1-expressing U87MG cells in which both neuropilins were knocked out using CRISPR/Cas9. In the absence of neuropilins, the EC50 of Sema3C was 5.5 times higher, indicating that the neuropilins function as enhancers of plexin-D1-mediated Sema3C signaling but are not absolutely required for Sema3C signal transduction. Interestingly, in the absence of neuropilins, plexin-A4 formed complexes with plexin-D1, and was required in addition to plexin-D1 to enable Sema3C-induced signal transduction.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Citoesqueleto/metabolismo , Neuropilinas/deficiência , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Neuropilinas/metabolismo , Transdução de Sinais
4.
Drug Resist Updat ; 29: 1-12, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27912840

RESUMO

The semaphorins were initially characterized as repulsive axon guidance factors. However, they are currently also recognized as important regulators of diverse biological processes which include regulation of immune responses, angiogenesis, organogenesis, and a variety of additional physiological and developmental functions. The semaphorin family consists of more than 20 genes divided into seven subfamilies, all of which contain the sema domain signature. They usually transduce signals by activation of receptors belonging to the plexin family, either directly, or indirectly following the binding of some semaphorins to receptors of the neuropilin family which subsequently associate with plexins. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signalling, and can strongly influence the nature of the biological responses of cells to semaphorins. Recent evidence suggests that semaphorins play important roles in the etiology of multiple forms of cancer. Some semaphorins such as some semaphorins belonging to the class-3 semaphorin subfamily, have been found to function as bona fide tumor suppressors and to inhibit tumor progression by various mechanisms. Because these class-3 semaphorins are secreted proteins, these semaphorins may potentially be used as anti-tumorigenic drugs. Other semaphorins, such as semaphorin-4D, function as inducers of tumor progression and represent targets for the development of novel anti-tumorigenic drugs. The mechanisms by which semaphorins affect tumor progression are diverse, ranging from direct effects on tumor cells to modulation of accessory processes such as modulation of immune responses and inhibition or promotion of tumor angiogenesis and tumor lymphangiogenesis. This review focuses on the diverse mechanisms by which semaphorins affect tumor progression.


Assuntos
Moléculas de Adesão Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Neuropilinas/genética , Semaforinas/genética , Animais , Moléculas de Adesão Celular/classificação , Moléculas de Adesão Celular/imunologia , Progressão da Doença , Humanos , Vasos Linfáticos/imunologia , Vasos Linfáticos/patologia , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/imunologia , Neuropilinas/classificação , Neuropilinas/imunologia , Domínios Proteicos , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Semaforinas/classificação , Semaforinas/imunologia , Transdução de Sinais
5.
Cell Rep ; 17(5): 1344-1356, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783948

RESUMO

While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice.


Assuntos
Linfangiogênese , Macrófagos/patologia , Paclitaxel/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Catepsinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Glucuronidase/metabolismo , Humanos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fenótipo , Regulação para Cima/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/sangue , Fator C de Crescimento do Endotélio Vascular/metabolismo
6.
Cell Adh Migr ; 10(6): 652-674, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27533782

RESUMO

The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.


Assuntos
Neoplasias/metabolismo , Semaforinas/metabolismo , Animais , Progressão da Doença , Humanos , Modelos Biológicos , Neoplasias/patologia , Receptores de Superfície Celular/metabolismo
7.
Cancer Res ; 75(11): 2177-86, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25808871

RESUMO

Semaphorins play important regulatory roles in diverse processes such as axon guidance, angiogenesis, and immune responses. We find that semaphorin-3C (sema3C) induces the collapse of the cytoskeleton of lymphatic endothelial cells (LEC) in a neuropilin-2-, plexin-D1-, and plexin-A1-dependent manner, while most other semaphorins, including antiangiogenic semaphorins such as sema3A do not. Sema3C is cleaved, like other class-3 semaphorins, by furin-like pro-protein convertases (FPPC). Cleaved sema3C (p65-Sema3C) was unable to induce the collapse of the cytoskeleton of LEC. FPPC are strongly upregulated in tumor cells. In order to examine the effects of full-length sema3C on tumor progression, we therefore generated an active point mutated furin cleavage-resistant sema3C (FR-sema3C). FR-sema3C inhibited potently proliferation of LEC and to a lesser extent proliferation of human umbilical vein-derived endothelial cells. FR-sema3C also inhibited VEGF-C-induced phosphorylation of VEGFR-3, ERK1/2, and AKT. Expression of recombinant FR-sema3C in metastatic, triple-negative LM2-4 breast cancer cells did not affect their migration or proliferation in vitro. However, tumors derived from FR-sema3C-expressing LM2-4 cells implanted in mammary fat pads developed at a slower rate, contained a lower concentration of blood vessels and lymph vessels, and metastasized much less effectively to lymph nodes. Interestingly, p65-Sema3C, but not FR-sema3C, rendered A549 lung cancer cells resistant to serum deprivation, suggesting that previously reported protumorigenic activities of sema3C may be due to p65-Sema3C produced by tumor cells. Our observations suggest that FR-sema3C may be further developed into a novel antitumorigenic drug.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares/genética , Linfangiogênese/genética , Semaforinas/genética , Neoplasias de Mama Triplo Negativas/genética , Inibidores da Angiogênese/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Citoesqueleto/genética , Citoesqueleto/patologia , Células Endoteliais/patologia , Feminino , Furina/genética , Furina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Semaforinas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
8.
J Cell Sci ; 127(Pt 24): 5240-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335892

RESUMO

Class 3 semaphorins are anti-angiogenic and anti-tumorigenic guidance factors that bind to neuropilins, which, in turn, associate with class A plexins to transduce semaphorin signals. To study the role of the plexin-A2 receptor in semaphorin signaling, we silenced its expression in endothelial cells and in glioblastoma cells. The silencing did not affect Sema3A signaling, which depended on neuropilin-1, plexin-A1 and plexin-A4, but completely abolished Sema3B signaling, which also required plexin-A4 and one of the two neuropilins. Interestingly, overexpression of plexin-A2 in plexin-A1- or plexin-A4-silenced cells restored responses to both semaphorins, although it nullified their ability to differentiate between them, suggesting that, when overexpressed, plexin-A2 can functionally replace other class A plexins. By contrast, although plexin-A4 overexpression restored Sema3A signaling in plexin-A1-silenced cells, it failed to restore Sema3B signaling in plexin-A2-silenced cells. It follows that the identity of plexins in functional semaphorin receptors can be flexible depending on their expression level. Our results suggest that changes in the expression of plexins induced by microenvironmental cues can trigger differential responses of different populations of migrating cells to encountered gradients of semaphorins.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inativação Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Neuropilina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...