Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36670787

RESUMO

The objectives were to determine the sensitivity, specificity, and cutoff values of a visual-based precision livestock technology (NUtrack), and determine the sensitivity and specificity of sickness score data collected with the live observation by trained human observers. At weaning, pigs (n = 192; gilts and barrows) were randomly assigned to one of twelve pens (16/pen) and treatments were randomly assigned to pens. Sham-pen pigs all received subcutaneous saline (3 mL). For LPS-pen pigs, all pigs received subcutaneous lipopolysaccharide (LPS; 300 µg/kg BW; E. coli O111:B4; in 3 mL of saline). For the last treatment, eight pigs were randomly assigned to receive LPS, and the other eight were sham (same methods as above; half-and-half pens). Human data from the day of the challenge presented high true positive and low false positive rates (88.5% sensitivity; 85.4% specificity; 0.871 Area Under Curve, AUC), however, these values declined when half-and-half pigs were scored (75% sensitivity; 65.5% specificity; 0.703 AUC). Precision technology measures had excellent AUC, sensitivity, and specificity for the first 72 h after treatment and AUC values were >0.970, regardless of pen treatment. These results indicate that precision technology has a greater potential for identifying pigs during a natural infectious disease event than trained professionals using timepoint sampling.

2.
J Vis Exp ; (148)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31233023

RESUMO

Traumatic brain injury (TBI) incidences have increased in both civilian and military populations, and many researchers are adopting a porcine model for TBI. Unlike rodent models for TBI, there are few behavioral tests that have been standardized. A larger animal requires more invasive handling in test areas than rodents, which potentially adds stress and variation to the animals' responses. Here, the human approach test (HAT) is described, which was developed to be performed in front of laboratory pigs' home pen. It is noninvasive, but flexible enough that it allows for differences in housing set-ups. During the HAT, three behavioral ethograms were developed and then a formula was applied to create an approach index (AI). Results indicate that the HAT and its index, AI, are sensitive enough to detect mild and temporary alterations in pigs' behavior after a mild TBI (mTBI). In addition, although specific behavior outcomes are housing-dependent, the use of an AI reduces variation and allows for consistent measurements across laboratories. This test is reliable and valid; HAT can be used across many laboratories and for various types of porcine models of injury, sickness, and distress. This test was developed for an optimized manual timestamping method such that the observer consistently spends no more than 9 min on each sample.


Assuntos
Abrigo para Animais , Laboratórios , Animais , Comportamento Animal , Concussão Encefálica/patologia , Humanos , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...