Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadj8898, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536930

RESUMO

Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates.

2.
Phys Rev Lett ; 129(16): 161101, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306763

RESUMO

We present exact solutions of test particle orbits spiraling inward from the innermost stable circular orbit (ISCO) of a Kerr black hole. Our results are valid for any allowed value of the angular momentum a parameter of the Kerr metric. These solutions are of considerable physical interest. In particular, the radial four-velocity of these orbits is both remarkably simple and, with the radial coordinate scaled by its ISCO value, universal in form, otherwise completely independent of the black hole spin.

3.
Proc Math Phys Eng Sci ; 474(2218): 20180075, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30839810

RESUMO

Theoretical models for the coefficient of thermal expansion (CTE) first proposed in the 1970s are expanded upon, allowing them, for the first time, to be implemented over a wide temperature range. The models are of interest because they predict the effects of the changes in the crystal lattice spacing and crystallite modulus on the CTE. Hence, they can in turn be used to investigate the influence of pressure and irradiation on the CTE. To date, typographical and mathematical errors and incomplete or conflicting assumptions between the various papers had made the complex mathematical formulations difficult, if not impossible, to follow and apply. This paper has two main aims: firstly to revisit and review the CTE models, correcting the errors and compiling and updating various input data, secondly to use the revised models to investigate the effect of loading and irradiation on the CTE. In particular, the models have been applied to data for natural and highly orientated pyrolytic graphite and compared with experimental data, giving an insight into the influence of temperature, loading and irradiation on both single crystal and polycrystalline graphite. The findings lend credence to postulated microstructural mechanisms attributed to the in-reactor behaviour of nuclear graphite, which finds a wide use in predictive multiscale modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...