Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38976194

RESUMO

The pervasive presence of microplastics in various settings, such as freshwater and marine ecosystems, has sparked serious concerns. Microplastics can operate as possible transporters for hazardous trace elements or microbes, even though they are not naturally able to actively absorb these compounds. The binding sites on the plastic's surface or the complexes that are formed with the organic material on the plastic are how this adsorption process takes place. Microplastics' surfaces also seem to be attractive to microorganisms, such as bacteria and algae. Microorganisms can adhere to the rough surface of microplastics, which facilitates their colonization and formation of biofilms. Numerous bacteria, including ones that have the ability to absorb hazardous trace elements, can be found in these biofilms. Microplastics and microbes can interact in ways that are advantageous and detrimental. Microplastics have the ability to act as a substrate for microbial growth, which could lead to an increase in the quantity of microorganisms in the surrounding environment. On the other hand, microplastics may make it easier for microbes to spread to new areas, which could help dangerous or deadly species proliferate. Research is still ongoing to determine the degree to which microplastics serve as carriers of microbes and hazardous trace elements. Comprehending the implications of microplastics, pollutants, and microorganisms in a variety of environmental conditions is difficult due to their complex interplay. This review provides a detailed description of the complexity of the problem and used the examples related to microplastics, its environmental effects, and impacts on human health.

2.
Environ Sci Pollut Res Int ; 31(9): 12856-12870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277099

RESUMO

AbstractPharmaceutical compounds are a significant source of environmental pollution, particularly in hospital wastewater, which contains high concentrations of such compounds. Constructed wetlands have emerged as a promising approach to removing pharmaceutical compounds from wastewater. This paper aims to review the current state of knowledge on the removal of pharmaceutical compounds from hospital wastewater using constructed wetlands, including the mechanism of removal, removal efficiency, and future prospects. Pharmaceutical contaminants have been considered to be one of the most emerging pollutants in recent years. In this review article, various studies on constructed wetlands are incorporated in order to remove the pharmaceutical contaminants. The nature of constructed wetland can be explained by understanding the types of constructed wetland, characteristics of hospital wastewater, removal mechanism, and removal efficiency. The results of the review indicate that constructed wetlands are effective in removing pharmaceutical compounds from hospital wastewater. The removal mechanism of these compounds involves a combination of physical, chemical, and biological processes, including adsorption, degradation, and uptake by wetland plants. The removal efficiency of constructed wetlands varies depending on several factors, including the type and concentration of pharmaceutical compounds, the design of the wetland system, and the environmental conditions. Further research is necessary to optimize the performance of these systems, particularly in the removal of emerging contaminants, to ensure their effectiveness and long-term sustainability.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Hospitais , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...