Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 185(1): 1-9, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718822

RESUMO

Federal statutes authorize several agencies to protect human populations from chemical emergencies and provide guidance to evacuate, clean, and reoccupy affected areas. Each of the authorized federal agencies has developed programs to provide managers, public health officials, and regulators, with a rapid assessment of potential hazards and risks associated with chemical emergencies. Emergency responses vary based on exposure scenarios, routes, temporal considerations, and the substance(s) present. Traditional chemical assessments and derivation of toxicity values are time-intensive, typically requiring large amounts of human epidemiological and experimental animal data. When a rapid assessment of health effects is needed, an integrated computational approach of augmenting extant toxicity data with in vitro (new alternative toxicity testing methods) data can provide a quick, evidence-based solution. In so doing, multiple streams of data can be used, including literature searches, hazard, dose-response, physicochemical, environmental fate, transport property data, in vitro cell bioactivity testing, and toxicogenomics. The field of toxicology is moving, towards increased use of this approach as it transforms from observational to predictive science. The challenge is to objectively and transparently derive toxicity values using this approach to protect human health and the environment. Presented here are examples and efforts toward rapid risk assessment that demonstrate unified, parallel, and complementary work to provide timely protection in times of chemical emergency.


Assuntos
Órgãos Governamentais , Saúde Pública , Técnicas In Vitro , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
2.
J Toxicol Environ Health A ; 80(9): 502-512, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28703686

RESUMO

Lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) are among the top 10 pollutants of global health concern. Studies have shown that exposures to these metals produce severe adverse effects. However, the mechanisms underlying these effects, particularly joint toxicities, are poorly understood in humans. The objective of this investigation was to identify and characterize prevalent combinations of these metals and their species in the U.S. NHANES population to provide background data for future studies of potential metal interactions. Exposure was defined as urine or blood levels ≥ medians of the NHANES 2007-2012 participants ≥6 years (n = 7408). Adjusted-odds ratios (adj-OR) and 95% confidence intervals were determined for covariates (age, gender, and race/ethnicity, cotinine and body mass index). Species-specific analysis was also conducted for As and Hg including iAs (urinary arsenous acid and/or arsenic acid), met-iAs (urinary monomethylarsonic acid and/or dimethylarsinic acid), and oHg (blood methyl-mercury and/or ethyl-mercury). For combinations of As and Hg species, age- and gender-specific prevalence was determined among NHANES 2011-2012 participants (n = 2342). Data showed that approximately 49.3% of the population contained a combination of three or more metals. The most prevalent unique specific combinations were Pb/Cd/Hg/As, Pb/Cd/Hg, and Pb/Cd. Age was consistently associated with these combinations: adj-ORs ranged from 10.9 (Pb/Cd) to 11.2 (Pb/Cd/Hg/As). Race/ethnicity was significant for Pb/Cd/Hg/As. Among women of reproductive age, frequency of oHg/iAs/met-iAS and oHg/met-iAs was 22.9 and 40.3%, respectively. These findings may help prioritize efforts to assess joint toxicities and their impact on public health.


Assuntos
Monitoramento Ambiental , Metais Pesados/sangue , Metais Pesados/toxicidade , Metais Pesados/urina , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Arsênio/sangue , Arsênio/urina , Cádmio/sangue , Cádmio/urina , Feminino , Humanos , Masculino , Mercúrio/sangue , Mercúrio/urina , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais , Fatores Socioeconômicos , Estados Unidos
3.
Exp Suppl ; 101: 361-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22945575

RESUMO

Most of the experimental toxicity testing data for chemicals are generated through the use of laboratory animals, namely, rodents such as rats and mice or other species. Interspecies extrapolation is needed to nullify the differences between species so as to use such data for human health/risk assessment. Thus, understanding of interspecies differences is important in extrapolating the laboratory results to humans and conducting human risk assessments based on current credible scientific knowledge. Major causes of interspecies differences in anatomy and physiology, toxicokinetics, injury repair, molecular receptors, and signal transduction pathways responsible for variations in responses to toxic chemicals are outlined. In the risk assessment process, uncertainty associated with data gaps in our knowledge is reflected by application of uncertainty factors for interspecies differences. Refinement of the risk assessment methods is the ultimate goal as we strive to realistically evaluate the impact of toxic chemicals on human populations. Using specific examples from current risk assessment practice, this chapter illustrates the integration of interspecies differences in evaluation of individual chemicals and chemical mixtures.


Assuntos
Interações Medicamentosas , Medição de Risco , Animais , Humanos , Farmacocinética , Especificidade da Espécie , Testes de Toxicidade , Incerteza
4.
Toxicol Sci ; 127(1): 10-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345310

RESUMO

The role of nonchemical stressors in modulating the human health risk associated with chemical exposures is an area of increasing attention. On 9 March 2011, a workshop titled "Approaches for Incorporating Nonchemical Stressors into Cumulative Risk Assessment" took place during the 50th Anniversary Annual Society of Toxicology Meeting in Washington D.C. Objectives of the workshop included describing the current state of the science from various perspectives (i.e., regulatory, exposure, modeling, and risk assessment) and presenting expert opinions on currently available methods for incorporating nonchemical stressors into cumulative risk assessments. Herein, distinct frameworks for characterizing exposure to, joint effects of, and risk associated with chemical and nonchemical stressors are discussed.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Estresse Psicológico , Toxicologia/educação , Simulação por Computador , District of Columbia , Educação , Monitoramento Ambiental , Humanos , Modelos Biológicos , Medição de Risco/métodos , Fatores Socioeconômicos
5.
Met Ions Life Sci ; 8: 61-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21473376

RESUMO

For communities generally and for persons living in the vicinity of waste sites specifically, potential exposures to chemical mixtures are genuine concerns. Such concerns often arise from perceptions of a site's higher than anticipated toxicity due to synergistic interactions among chemicals. This chapter outlines some historical approaches to mixtures risk assessment. It also outlines ATSDR's current approach to toxicity risk assessment. The ATSDR's joint toxicity assessment guidance for chemical mixtures addresses interactions among components of chemical mixtures. The guidance recommends a series of steps that include simple calculations for a systematic analysis of data leading to conclusions regarding any hazards chemical mixtures might pose. These conclusions can, in turn, lead to recommendations such as targeted research to fill data gaps, development of new methods using current science, and health education to raise awareness of residents and health care providers. The chapter also provides examples of future trends in chemical mixtures assessment.


Assuntos
Substâncias Perigosas/toxicidade , Metais/toxicidade , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Substâncias Perigosas/farmacocinética , Humanos , Metais/farmacocinética , Modelos Biológicos , Medição de Risco , Toxicogenética
6.
Regul Toxicol Pharmacol ; 54(3): 264-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19445993

RESUMO

The paper reflects on the last 15years of experience in the field of mixtures risk assessment. It summarizes results found in various documents developed by the Agency for Toxic Substances and Disease Registry (ATSDR) of the weight-of-evidence (WOE) approach applied to 380 binary combinations of chemicals. Of these evaluations, 156 assessments indicated possible additivity of effects [=], 76 indicated synergism (greater-than-additive effects [>]), and 57 indicated antagonism (less-than-additive effects [<]). However, 91 combinations lacked the minimum information needed for making any assessments and, hence, were undetermined. The paper provides examples of the rationale behind some of the WOE decisions and discusses the importance of expert judgments in risk assessment evaluations. Examples are given regarding the importance of human variability in mixtures' ability to affect human health and regarding the dose versus effect relationships.


Assuntos
Substâncias Perigosas/classificação , Substâncias Perigosas/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Medição de Risco
7.
Toxicol Mech Methods ; 18(2-3): 119-35, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-20020909

RESUMO

ABSTRACT Hazard identification and health risk assessment traditionally rely on results of experimental testing in laboratory animals. It is a lengthy and expensive process, which at the end still involves large uncertainty because the sensitivity of animals is unequal to the sensitivity of humans. The Agency for Toxic Substances and Disease Registry (ATSDR) Computational Toxicology and Method Development Laboratory develops and applies advanced computational models that augment the traditional toxicological approach with multilevel cross-extrapolation techniques. On the one hand, these techniques help to reduce the uncertainty associated with experimental testing, and on the other, they encompass yet untested chemicals, which otherwise would be left out of public health assessment. Computational models also improve understanding of the mode of action of toxic agents, and fundamental mechanisms by which they may cause injury to the people. The improved knowledge is incorporated in scientific health guidance documents of the Agency, including the Toxicological Profiles, which are used as the basis for scientifically defensible public health assessments.

8.
Toxicol Appl Pharmacol ; 225(2): 171-88, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17905399

RESUMO

The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or threefold lower concentration individually or in binary or ternary mixtures. The compounds had strong antagonistic effects on each other's gene expression changes, which included several genes encoding Phase I and II metabolizing enzymes. On the other hand, the mixtures affected the expression of "novel" genes that were not or little affected by the individual compounds. The three compounds exhibited a synergistic interaction on gene expression changes at the LOAEL in the liver and both at the sub-LOAEL and LOAEL in the kidney. Many of the genes induced by mixtures but not by single compounds, such as Id2, Nr2f6, Tnfrsf1a, Ccng1, Mdm2 and Nfkb1 in the liver, are known to affect cellular proliferation, apoptosis and tissue-specific function. This indicates a shift from compound specific response on exposure to individual compounds to a more generic stress response to mixtures. Most of the effects on cell viability as concluded from transcriptomics were not detected by classical toxicological endpoints illustrating the benefit of increased sensitivity of assessing gene expression profiling. These results emphasize the benefit of applying toxicogenomics in mixture interaction studies, which yields biomarkers for joint toxicity and eventually can result in an interaction model for most known toxicants.


Assuntos
Benzeno/toxicidade , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Tricloroetileno/toxicidade , Animais , Benzeno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Sinergismo Farmacológico , Poluentes Ambientais/farmacologia , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Compostos de Metilmercúrio/farmacologia , Nível de Efeito Adverso não Observado , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade , Tricloroetileno/farmacologia
9.
J Appl Toxicol ; 27(5): 511-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17582588

RESUMO

Thimerosal, which releases the ethyl mercury radical as the active species, has been used as a preservative in many currently marketed vaccines throughout the world. Because of concerns that its toxicity could be similar to that of methyl mercury, it is no longer incorporated in many vaccines in the United States. There are reasons to believe, however, that the disposition and toxicity of ethyl mercury compounds, including thimerosal, may differ substantially from those of the methyl form. The current study sought to compare, in neonatal mice, the tissue concentrations, disposition and metabolism of thimerosal with that of methyl mercury. ICR mice were given single intramuscular injections of thimerosal or methyl mercury (1.4 mg Hg kg(-1)) on postnatal day 10 (PND 10). Tissue samples were collected daily on PND 11-14. Most analysed tissues demonstrated different patterns of tissue distribution and a different rate of mercury decomposition. The mean organic mercury in the brain and kidneys was significantly lower in mice treated with thimerosal than in the methyl mercury-treated group. In the brain, thimerosal-exposed mice showed a steady decrease of organic mercury levels following the initial peak, whereas in the methyl mercury-exposed mice, concentrations peaked on day 2 after exposure. In the kidneys, thimerosal-exposed mice retained significantly higher inorganic mercury levels than methyl mercury-treated mice. In the liver both organic and inorganic mercury concentrations were significantly higher in thimerosal-exposed mice than in the methyl mercury group. Ethyl mercury was incorporated into growing hair in a similar manner to methyl mercury. The data showing significant kinetic differences in tissue distribution and metabolism of mercury species challenge the assumption that ethyl mercury is toxicologically identical to methyl mercury.


Assuntos
Compostos de Metilmercúrio/farmacocinética , Timerosal/farmacocinética , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Distribuição Tecidual
10.
Toxicology ; 232(1-2): 1-14, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17267091

RESUMO

The aim was to study the subchronic toxicity of perchloroethylene (Perc) by measuring injury and repair in liver and kidney in relation to disposition of Perc and its major metabolites. Male SW mice (25-29g) were given three dose levels of Perc (150, 500, and 1000 mg/kg day) via aqueous gavage for 30 days. Tissue injury was measured during the dosing regimen (0, 1, 7, 14, and 30 days) and over a time course of 24-96h after the last dose (30 days). Perc produced significant liver injury (ALT) after single day exposure to all three doses. Liver injury was mild to moderate and regressed following repeated exposure for 30 days. Subchronic Perc exposure induced neither kidney injury nor dysfunction during the entire time course as evidenced by normal renal histology and BUN. TCA was the major metabolite detected in blood, liver, and kidney. Traces of DCA were also detected in blood at initial time points after single day exposure. With single day exposure, metabolism of Perc to TCA was saturated with all three doses. AUC/dose ratio for TCA was significantly decreased with a concomitant increase in AUC/dose of Perc levels in liver and kidney after 30 days as compared to 1 day exposures, indicating inhibition of metabolism upon repeated exposure to Perc. Hepatic CYP2E1 expression and activity were unchanged indicating that CYP2E1 is not the critical enzyme inhibited. Hepatic CYP4A expression, measured as a marker of peroxisome proliferation was increased transiently only on day 7 with the high dose, but was unchanged at later time points. Liver tissue repair peaked at 7 days, with all three doses and was sustained after medium and high dose exposure for 14 days. These data indicate that subchronic Perc exposure via aqueous gavage does not induce nephrotoxicity and sustained hepatotoxicity suggesting adaptive hepatic repair mechanisms. Enzymes other than CYP2E1, involved in the metabolism of Perc may play a critical role in the metabolism of Perc upon subchronic exposure in SW mice. Liver injury decreased during repeated exposure due to inhibition of metabolism and possibly due to adaptive tissue repair mechanisms.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Ambientais/toxicidade , Nefropatias/induzido quimicamente , Tetracloroetileno/toxicidade , Alanina Transaminase/sangue , Animais , Nitrogênio da Ureia Sanguínea , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP4A/metabolismo , Replicação do DNA/fisiologia , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/farmacocinética , Glutationa/metabolismo , Histocitoquímica , Nefropatias/enzimologia , Nefropatias/metabolismo , Nefropatias/patologia , Hepatopatias/enzimologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Microssomos Hepáticos/enzimologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Tetracloroetileno/administração & dosagem , Tetracloroetileno/farmacocinética , Timidina/metabolismo , Ácido Tricloroacético/metabolismo
11.
Toxicol Appl Pharmacol ; 216(1): 108-21, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16815507

RESUMO

Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethal dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of (14)C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of (14)C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC(15-360 min)) in the systemic circulation. Exhalation of (14)C-chloroform was unchanged in primed as compared to unprimed mice (AUC(1-6 h)). Urinary excretion of (14)C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.


Assuntos
Clorofórmio/administração & dosagem , Nefropatias/prevenção & controle , Hepatopatias/prevenção & controle , Alanina Transaminase/metabolismo , Animais , Área Sob a Curva , Butionina Sulfoximina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Clorofórmio/farmacocinética , Clorofórmio/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Intubação Gastrointestinal , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/mortalidade , Hepatopatias/mortalidade , Camundongos , Taxa de Sobrevida
12.
Toxicol Appl Pharmacol ; 213(3): 267-81, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16630638

RESUMO

The aims of the present study were to characterize the subchronic toxicity of chloroform by measuring tissue injury, repair, and distribution of chloroform and to assess the reasons for the development of tolerance to subchronic chloroform toxicity. Male Swiss Webster (SW) mice were given three dose levels of chloroform (150, 225, and 300 mg/kg/day) by gavage in aqueous vehicle for 30 days. Liver and kidney injury were measured by plasma ALT and BUN, respectively, and by histopathology. Tissue regeneration was assessed by (3)H-thymidine incorporation into hepato- and nephro-nuclear DNA and by proliferating cell nuclear antigen staining. In addition, GSH and CYP2E1 in liver and kidney were assessed at selected time points. The levels of chloroform were measured in blood, liver, and kidney during the dosing regimen (1, 7, 14, and 30 days). Kidney injury was evident after 1 day with all three doses and sustained until 7 days followed by complete recovery. Mild to moderate liver injury was observed from 1 to 14 days with all three dose levels followed by gradual decrease. Significantly higher regenerative response was evident in liver and kidney at 7 days, but the response was robust in kidney, preventing progression of injury beyond first week of exposure. While the kidney regeneration reached basal levels by 21 days, moderate liver regeneration with two higher doses sustained through the end of the dosing regimen and 3 days after that. Following repeated exposure for 7, 14, and 30 days, the blood and tissue levels of chloroform were substantially lower with all three dose levels compared to the levels observed with single exposure. Increased exhalation of (14)C-chloroform after repeated exposures explains the decreased chloroform levels in circulation and tissues. These results suggest that toxicokinetics and toxicodynamics (tissue regeneration) contribute to the tolerance observed in SW mice to subchronic chloroform toxicity. Neither bioactivation nor detoxification appears to play a decisive role in the development of this tolerance.


Assuntos
Clorofórmio/toxicidade , Rim/efeitos dos fármacos , Regeneração Hepática , Fígado/efeitos dos fármacos , Regeneração , Animais , Dióxido de Carbono/metabolismo , Clorofórmio/sangue , Clorofórmio/farmacocinética , Citocromo P-450 CYP2E1/metabolismo , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Expiração , Glutationa/metabolismo , Rim/patologia , Rim/fisiologia , Fígado/patologia , Fígado/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos
13.
Basic Clin Pharmacol Toxicol ; 96(6): 436-44, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15910407

RESUMO

The aim of the present study was to investigate the hypothesis that liver tissue repair induced by exposure to chloroform (CHCl(3))+trichloroethylene binary mixture (BM) is dose-dependent similar to that elicited by exposure to these compounds individually. Male Sprague-Dawley rats (250-300 g) received three dose combinations of binary mixture (74+250, 185+500 and 370+1250 mg CHCl(3)+trichloroethylene/kg, intraperitoneally) in corn oil (maximum of 0.5 ml/kg). Liver injury was assessed by plasma alanine amino transaminase (ALT) activity and histopathology by haematoxylin & eosin. Liver tissue repair was measured by (3)H-thymidine incorporation into hepatonuclear DNA. Blood and liver levels of both the parent compounds and two major metabolites of trichloroethylene (trichloroacetic acid and trichloroethanol) were quantified by gas chromatography. The blood and liver CHCl(3) levels after the administration of binary mixture were similar compared to the administration of CHCl(3) alone. The blood and liver trichloroethylene levels after the binary mixture were significantly lower compared to trichloroethylene alone due to higher elimination in presence of CHCl(3), resulting in decreased production of metabolites. The antagonistic toxicokinetics resulted in lower liver injury than the summation of injury caused by the individual components at all three dose levels. On the other hand, tissue repair elicited by the binary mixture was dose-dependent. The interactive toxicity of this binary mixture of CHCl(3) and trichloroethylene led to subadditive initial liver injury because of a combined effect of higher elimination of TCE and mitigated progression of liver injury was prevented by timely dose-dependent stimulation of compensatory tissue repair. Even though the doses of the toxicants employed in this study are much higher than found in the environment, the results suggest that a mixture of these two compounds at environmental levels is unlikely to cause any exaggerated interactive acute liver toxicity of any biological significance.


Assuntos
Clorofórmio/antagonistas & inibidores , Clorofórmio/toxicidade , Regeneração Hepática/efeitos dos fármacos , Tricloroetileno/antagonistas & inibidores , Tricloroetileno/toxicidade , Alanina Transaminase/sangue , Animais , Área Sob a Curva , Clorofórmio/farmacocinética , Fígado/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Ácido Tricloroacético/análise , Ácido Tricloroacético/sangue , Ácido Tricloroacético/urina , Tricloroetileno/farmacocinética
14.
J Occup Environ Hyg ; 2(3): 127-35, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15764536

RESUMO

Under OSHA and American Conference of Governmental Industrial Hygienists (ACGIH) guidelines, the mixture formula (unity calculation) provides a method for evaluating exposures to mixtures of chemicals that cause similar toxicities. According to the formula, if exposures are reduced in proportion to the number of chemicals and their respective exposure limits, the overall exposure is acceptable. This approach assumes that responses are additive, which is not the case when pharmacokinetic interactions occur. To determine the validity of the additivity assumption, we performed unity calculations for a variety of exposures to toluene, ethylbenzene, and/or xylene using the concentration of each chemical in blood in the calculation instead of the inhaled concentration. The blood concentrations were predicted using a validated physiologically based pharmacokinetic (PBPK) model to allow exploration of a variety of exposure scenarios. In addition, the Occupational Safety and Health Administration and ACGIH occupational exposure limits were largely based on studies of humans or animals that were resting during exposure. The PBPK model was also used to determine the increased concentration of chemicals in the blood when employees were exercising or performing manual work. At rest, a modest overexposure occurs due to pharmacokinetic interactions when exposure is equal to levels where a unity calculation is 1.0 based on threshold limit values (TLVs). Under work load, however, internal exposure was 87%higher than provided by the TLVs. When exposures were controlled by a unity calculation based on permissible exposure limits (PELs), internal exposure was 2.9 and 4.6 times the exposures at the TLVs at rest and workload, respectively. If exposure was equal to PELs outright, internal exposure was 12.5 and 16 times the exposure at the TLVs at rest and workload, respectively. These analyses indicate the importance of (1) selecting appropriate exposure limits, (2) performing unity calculations, and (3) considering the effect of work load on internal doses, and they illustrate the utility of PBPK modeling in occupational health risk assessment.


Assuntos
Derivados de Benzeno/farmacocinética , Derivados de Benzeno/toxicidade , Modelos Biológicos , Exposição Ocupacional , Tolueno/farmacocinética , Tolueno/toxicidade , Xilenos/farmacocinética , Xilenos/toxicidade , Animais , Derivados de Benzeno/sangue , Interações Medicamentosas , Metabolismo Energético , Humanos , Modelos Animais , Reprodutibilidade dos Testes , Medição de Risco , Tolueno/sangue , Carga de Trabalho , Local de Trabalho , Xilenos/sangue
15.
Environ Toxicol Pharmacol ; 16(1-2): 45-55, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21782693

RESUMO

Three regression methods, namely ridge regression (RR), partial least squares (PLS), and principal components regression (PCR), were used to develop models for the prediction of rat blood:air partition coefficient for increasingly diverse data sets. Initially, modeling was performed for a set of 13 chlorocarbons. To this set, 10 additional hydrophobic compounds were added, including aromatic and non-aromatic hydrocarbons. A set of 16 hydrophilic compounds was also modeled separately. Finally, all 39 compounds were combined into one data set for which comprehensive models were developed. A large set of diverse, theoretical molecular descriptors was calculated for use in the current study. The topostructural (TS), topochemical (TC), and geometrical or 3-dimensional (3D) indices were used hierarchically in model development. In addition, single-class models were developed using the TS, TC, and 3D descriptors. In most cases, RR outperformed PLS and PCR, and the models developed using TC indices were superior to those developed using other classes of descriptors.

16.
Environ Toxicol Pharmacol ; 16(1-2): 57-71, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21782694

RESUMO

Environmental exposure is usually due to the presence of multiple chemicals. In most cases, these chemicals interact with each other at both pharmacokinetic and pharmacodynamic toxicity mechanisms. In the absence of data, joint toxicity assessment of a mixture is based on default dose or response additivity. Although, the concept of additivity is mostly accepted at low dose levels, these levels need to be determined quantitatively to validate the use of additivity as an absence of any possible synergistic or antagonistic interactions at low environmental exposure levels. The doses at which interaction becomes significant define the interaction threshold. In most cases, estimation of these low-dose interaction thresholds experimentally is economically costly and challenging because of the need to use a large number of laboratory animals. Computational toxicology methods provide a feasible alternative to establish interaction thresholds. For example, a physiologically based pharmacokinetic (PBPK) model was developed to estimate an interaction threshold for the joint toxicity between chlorpyrifos and parathion in the rat. Initially, PBPK models were developed for each chemical to estimate the blood concentrations of their respective metabolite. The metabolite concentrations in blood out-put was then linked to acetylcholinesterase kinetics submodel. The resulting overall PBPK model described interactions between these pesticides at two levels in the organism: (a) the P450 enzymatic bioactivation site, and (b) acetylcholinesterase binding sites. Using the overall model, a response surface was constructed at various dose levels of each chemical to investigate the mechanism of interaction and to calculate interaction threshold doses. The overall model simulations indicated that additivity is obtained at oral dose levels below 0.08mg/kg of each chemical. At higher doses, antagonism by enzymatic competitive inhibition is the mode of interaction.

17.
Environ Toxicol Pharmacol ; 16(1-2): 107-19, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21782697

RESUMO

Petroleum hydrocarbon mixtures such as gasoline, diesel fuel, aviation fuel, and asphalt liquids typically contain hundreds of compounds. These compounds include aliphatic and aromatic hydrocarbons within a specific molecular weight range and sometimes lesser amounts of additives, and often exhibit qualitatively similar pharmacokinetic (PK) and pharmacodynamic properties. However, there are some components that exhibit specific biological effects, such as methyl t-butyl ether and benzene in gasoline. One of the potential pharmacokinetic interactions of many components in such mixtures is inhibition of the metabolism of other components. Due to the complexity of the mixtures, a quantitative description of the pharmacokinetics of each component, particularly in the context of differing blends of these mixtures, has not been available. We describe here a physiologically-based pharmacokinetic (PBPK) modeling approach to describe the PKs of whole gasoline. The approach simplifies the problem by isolating specific components for which a description is desired and treating the remaining components as a single lumped chemical. In this manner, the effect of the non-isolated components (i.e. inhibition) can be taken into account. The gasoline model was based on PK data for the single chemicals, for simple mixtures of the isolated chemicals, and for the isolated and lumped chemicals during gas uptake PK experiments in rats exposed to whole gasoline. While some sacrifice in model accuracy must be made when a chemical lumping approach is used, our lumped PK model still permitted a good representation of the PKs of five isolated chemicals (n-hexane, benzene, toluene, ethylbenzene, and o-xylene) during exposure to various levels of two different blends of gasoline. The approach may be applicable to other hydrocarbon mixtures when appropriate PK data are available for model development.

18.
Environ Toxicol Pharmacol ; 18(2): 135-41, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21782742

RESUMO

One of the initial steps in remediating contaminated environments is to assess the human and ecological health risk associated with exposure to contaminants in a specific medium. Presented here are the results of a five-year study investigating the toxicity of simple and complex mixtures. A series of model compounds and simple mixtures including polycyclic aromatic hydrocarbons (PAHs), pentachlorophenol (PCP), and halogenated aliphatic hydrocarbons (HAHs) were analyzed. Mixture toxicity was studied using microbial genotoxicity assays and cytotoxicity assays with renal and neural cells. The majority of binary mixtures described here induced additive responses. A limited number of samples were identified where binary mixtures induced inhibitory effects. For example, benzo(a)pyrene (BAP) alone induced 30% renal cell death, whereas an equimolar dose of chrysene and BAP only produced 1.6% cellular death. In none of the mixtures tested did the mixture toxicity results deviate from the predicted results by an order of magnitude. The results from testing binary mixtures in this study indicate that the results did not deviate significantly from additivity. Complex mixture results were more difficult to interpret. The toxicity of complex mixtures could not be accurately predicted based on chemical analysis. This could be due to chemical interactions or due to the presence of unidentified chemicals, such as alkyl PAHs or high molecular weight PAHs that are not included in the standard risk assessment procedure. Even though the results from these in vitro studies indicate that additive assumptions will generally be appropriate for binary mixtures similar to the ones tested here, the risk associated with complex mixtures remains a challenge to predict. Before the results of toxicity testing can be used to adjust risk assessment calculations, it is important to fully appreciate the chemical composition and to understand the mechanism of observed chemical interactions in animals chronically exposed to low doses of chemical mixtures. This research was supported by ATSDR Grant no. ATU684505 and NIEHS SBRP Grant no. P42 ES04917.

19.
Environ Toxicol Pharmacol ; 18(2): 143-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21782743

RESUMO

The objective of this study was to test whether a binary mixture (BM) of chloroform (CHCl(3)) and thioacetamide (TA) causes a dose-dependent liver injury and an opposing tissue repair. Liver injury was assessed by plasma alanine aminotransferase (ALT) and histopathology. Tissue repair was measured by [(3)H-CH(3)]-thymidine ((3)H-T) incorporation into hepatonuclear DNA and PCNA over a time course of 0-72h. Male Sprague-Dawley (S-D) rats received six- and five-fold dose ranges of TA and CHCl(3), respectively. ALT levels and (3)H-T incorporation were in complete agreement with corresponding microscopic observations, and only ALT elevation and (3)H-T incorporation data are presented here. Liver injury observed after exposure to BM was no different than addition of injuries caused by individual compounds. Tissue repair was prompt and adequate, leading to recovery from injury and animal survival. Tissue repair is dose-dependent and plays central role in the hepatotoxic outcome.

20.
Food Chem Toxicol ; 41(8): 1123-32, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12842180

RESUMO

The objective of this study was to evaluate the interaction profile of chloroform (CHCl(3))+allyl alcohol (AA) binary mixture (BM)-induced acute hepatotoxic response. Plasma alanine aminotransferase (ALT) was measured to assess liver injury, and 3H-thymidine (3H-T) incorporation into hepatonuclear DNA was measured as an index of liver regeneration over a time course of 0-72 h. Male Sprague-Dawley (S-D) rats received single ip injection of 5-fold dose range of CHCl(3) (74, 185 and 370 mg/kg) in corn oil (maximum 0.5 ml/kg) and 7-fold dose range of AA (5, 20 and 35 mg/kg) in distilled water simultaneously. The doses for BM were selected from individual toxicity studies of CHCl(3) alone [Int. J. Toxicol. 22 (2003) 25], and AA alone [Reg. Pharmacol. Toxicol. 19 (1999) 165]. Since the highest dose of each treatment (CHCl(3)- 740 and AA- 50 mg/kg) yielded mortality due to the suppressed tissue repair followed by liver failure, this dose was omitted for BM. The levels of CHCl(3) (30-360 min) and AA (5-60 min) were quantified in blood and liver by gas chromatography (GC). The liver injury was more than additive after BM compared to CHCl(3) alone or AA alone at highest dose combination (370+35 mg/kg), which peaked at 24 h. The augmented liver injury observed with BM was consistent with the quantitation data. Though the liver injury was higher, the greater stimulation of tissue repair kept injury from progressing, and rescued the rats from hepatic failure and death. At lower dose combinations, the liver injury was no more than additive. Results of the present study suggest that liver tissue repair, in which liver tissue lost to injury is promptly replaced, plays a pivotal role in the final outcome of liver injury after exposure to BM of CHCl(3) and AA.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Clorofórmio/toxicidade , Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Propanóis/toxicidade , Alanina Transaminase/sangue , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Clorofórmio/administração & dosagem , Clorofórmio/farmacocinética , Cromatografia Gasosa , DNA/biossíntese , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Injeções Intraperitoneais , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/fisiologia , Longevidade/efeitos dos fármacos , Masculino , Propanóis/administração & dosagem , Propanóis/farmacocinética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...