Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257233

RESUMO

Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced ß-amyloid (Aß) aggregation. Hybrids also exhibited the inhibition of Aß self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Animais , Camundongos , Inibidores da Colinesterase/farmacologia , Antioxidantes/farmacologia , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Acetilcolinesterase , Farmacóforo
2.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296478

RESUMO

In this work a new donor of nitric oxide (NO) with antibacterial properties, namely nitrosyl iron complex of [Fe(C6H5C-SNH2)2(NO)2][Fe(C6H5C-SNH2)(S2O3)(NO)2] composition (complex I), has been synthesized and studied. Complex I was produced by the reduction of the aqueous solution of [Fe2(S2O3)2(NO)2]2- dianion by the thiosulfate, with the further treatment of the mixture by the acidified alcohol solution of thiobenzamide. Based on the structural study of I (X-ray analysis, quantum chemical calculations by NBO and QTAIM methods in the frame of DFT), the data were obtained on the presence of the NO…NO interactions, which stabilize the DNIC dimer in the solid phase. The conformation properties, electronic structure and free energies of complex I hydration were studied using B3LYP functional and the set of 6-31 + G(d,p) basis functions. The effect of an aquatic surrounding was taken into account in the frame of a polarized continuous model (PCM). The NO-donating activity of complex I was studied by the amperometry method using an "amiNO-700" sensor electrode of the "inNO Nitric Oxide Measuring System". The antibacterial activity of I was studied on gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria. Cytotoxicity was studied using Vero cells. Complex I was found to exhibit antibacterial activity comparable to that of antibiotics, and moderate toxicity to Vero cells.


Assuntos
Compostos de Ferro , Óxido Nítrico , Animais , Chlorocebus aethiops , Óxido Nítrico/química , Tiossulfatos , Células Vero , Compostos de Ferro/farmacologia , Ferro/química , Antibacterianos/química , Escherichia coli
3.
Curr Org Synth ; 18(5): 443-445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390116

RESUMO

Iso-octenidine, an isomer of octenidine dihydrochloride, was synthesized and studied for the first time. Iso-octenidine was demonstrated to be 3-fold more soluble in water in comparison to original octenidine, and both substances had remarkably similar antibacterial activity (tested on Escherichia Coli and Micrococcus luteus).


Assuntos
Anti-Infecciosos Locais , Antibacterianos/farmacologia , Iminas , Piridinas , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...