Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 244: 107954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041995

RESUMO

BACKGROUND AND OBJECTIVE: Clinical Decision Support Systems (CDSS) have substantially evolved, aiding healthcare professionals in informed patient care decision-making. The integration of AI, encompassing machine learning and natural language processing, has notably enhanced the capabilities of CDSS. However, a significant challenge remains in addressing data imbalance and the black box nature of AI algorithms, particularly for rare diseases or underrepresented demographic groups. This study aims to propose a model, U-AnoGAN, designed to overcome these hurdles and augment the diagnostic accuracy of AI-integrated CDSS. METHODS: The U-AnoGAN was trained using masks derived from normal data, focusing on the Covid-19 and pneumonia datasets. Anomaly scores were calculated to assess the model's performance compared to existing AnoGAN-related algorithms. The study also evaluated the model's interpretability through the visualization of abnormal regions. RESULTS: The results indicated that U-AnoGAN surpassed its counterparts in performance and interpretability. It effectively addressed the data imbalance problem by necessitating only normal data and showcased enhanced diagnostic accuracy. Precision, sensitivity, and specificity values reflected U-AnoGAN's superior capability in accurate disease prediction, diagnosis, treatment recommendations, and adverse event detection. CONCLUSIONS: U-AnoGAN significantly bolsters the predictive power of AI-integrated CDSS, enabling more precise and timely diagnoses while providing better visualization to potentially overcome the black box problem. This model presents tremendous potential in elevating patient care with advanced AI tools and fostering more accurate and effective decision-making in healthcare environments. As the healthcare sector grapples with escalating data complexity and volume, the importance of models like U-AnoGAN in enhancing CDSS cannot be overstated.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Humanos , Algoritmos , Aprendizado de Máquina , Processamento de Linguagem Natural
2.
PLoS One ; 14(8): e0220819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415621

RESUMO

This paper proposes a method to quantitatively identify the changes of technological paradigm over time. Specifically, the method identifies previous paradigms and predicts future paradigms by analyzing a patent citation-based knowledge network. The technological paradigm can be considered as dominantly important knowledge in a specific period. Therefore, we adopted the knowledge persistence which can quantify technological impact of an invention to recent technologies in a knowledge network. High knowledge persistence patents are dominant or paradigmatic inventions in a specific period and so changes of top knowledge persistence patents over time can show paradigm shifts. Moreover, since knowledge persistence of paradigmatic inventions are increasing dramatically faster than other ordinary inventions, recent patents having similar increasing trends in knowledge persistence with previous paradigms are identified as future paradigm inventions. We conducted an empirical case study using patents related to the genome sequencing technology. The results show that the identified previous paradigms are widely recognized as critical inventions in the domain by other studies and the identified future paradigms are also qualitatively significant inventions as promising technologies.


Assuntos
Invenções , Bases de Conhecimento , Conhecimento , Tecnologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...