Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 25707-25717, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237095

RESUMO

Transporting cold atoms between interconnected vacuum chambers is an important technique for increasing the versatility of cold atom setups, particularly for those that couple atoms to photonic devices. In this report, we introduce a method where we are able to image the atoms at all points during transport via moving optical dipole trap. Cooled 87Rb atoms are transported ∼50 cm into an auxiliary vacuum chamber while being monitored with a moving-frame imaging system for which in-situ characterization of the atom transport is demonstrated. Precise positioning of the atoms near photonic devices is also tested across several tapered fibers showing an axial positioning resolution of ∼450 µm.

2.
Rev Sci Instrum ; 82(7): 073105, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806170

RESUMO

The linewidth of a distributed-feedback (DFB) diode laser at 1156 nm, of which free-running linewidth was 3 MHz, was reduced to 15 kHz using an all-fiber interferometer with 5-m-long path imbalance. Optical power loss and bandwidth limitation were negligible with this short optical fiber patch cord. This result was achieved without acoustic and vibration isolations, and the frequency lock could be maintained over weeks. In addition to its simplicity, compactness, robustness, and cost-effectiveness, this technique can be applied at any wavelength owing to the availability of DFB diode lasers and fiber-optic components.

3.
Phys Rev Lett ; 99(15): 150604, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17995152

RESUMO

The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5 recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott insulator (MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable phases was observed.

4.
Science ; 313(5787): 649-52, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16888134

RESUMO

Microwave spectroscopy was used to probe the superfluid-Mott insulator transition of a Bose-Einstein condensate in a three-dimensional optical lattice. By using density-dependent transition frequency shifts, we were able to spectroscopically distinguish sites with different occupation numbers and to directly image sites with occupation numbers from one to five, revealing the shell structure of the Mott insulator phase. We used this spectroscopy to determine the onsite interaction and lifetime for individual shells.

5.
Phys Rev Lett ; 96(2): 020406, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486549

RESUMO

We have observed parametric generation and amplification of ultracold atom pairs. A 87Rb Bose-Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k0 and spontaneously scattered into two final states with quasimomenta k1 and k2 . Furthermore, when a seed of atoms was first created with quasimomentum k1 we observed parametric amplification of scattered atoms pairs in states k1 and k2 when the phase-matching condition was fulfilled. This process is analogous to optical parametric generation and amplification of photons and could be used to efficiently create entangled pairs of atoms. Furthermore, these results explain the dynamic instability of condensates in moving lattices observed in recent experiments.

6.
Phys Rev Lett ; 97(26): 260402, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17280408

RESUMO

Continuous and pulsed quantum Zeno effects were observed using a 87Rb Bose-Einstein condensate. Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven at a transition rate omega(R), were suppressed by destructively measuring the population in one of the states with resonant light. The suppression of the transition rate in the two-level system was quantified for pulsed measurements with a time interval deltat between pulses and continuous measurements with a scattering rate gamma. We observe that the continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when gammadeltat=3.60(0.43), in agreement with the predicted value of 4. Increasing the measurement rate suppressed the transition rate down to 0.005 omega(R).

7.
Phys Rev Lett ; 94(17): 170403, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15904272

RESUMO

A systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms has been observed. The recoil frequency was determined with a two-pulse light grating interferometer using near-resonant laser light. The results show that the recoil momentum of atoms caused by the absorption of a photon is n variant Planck's k, where n is the index of refraction of the gas and k is the vacuum wave vector of the photon. This systematic effect must be accounted for in high-precision atom interferometry with light gratings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...