Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2310130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145576

RESUMO

Optical encryption using coloration and photoluminescent (PL) materials can provide highly secure data protection with direct and intuitive identification of encrypted information. Encryption capable of independently controlling wavelength-tunable coloration as well as variable light intensity PL is not adequately demonstrated yet. Herein, a rewritable PL and structural color (SC) display suitable for dual-responsive optical encryption developed with a stimuli-responsive SC of a block copolymer (BCP) photonic crystal (PC) with alternating in-plane lamellae, of which a variety of 3D and 2D perovskite nanocrystals is preferentially self-assembled with characteristic PL, is presented. The SC of a BCP PC is controlled in the visible range with different perovskite precursor doping times. The perovskite nanocrystals developed in the BCP PC are highly luminescent, with a PL quantum yield of ≈33.7%, yielding environmentally stable SC and PL dual-mode displays. The independently programmed SC and PL information is erasable and rewritable. Dual-responsive optical encryption is demonstrated, in which true Morse code information is deciphered only when the information encoded by SCs is properly combined with PL information. Numerous combinations of SC and PL realize high security level of data anticounterfeiting. This dual-mode encryption display offers novel optical encryption with high information security and anti-counterfeiting.

2.
Light Sci Appl ; 12(1): 226, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696793

RESUMO

Optical encryption technologies based on room-temperature light-emitting materials are of considerable interest. Herein, we present three-dimensional (3D) printable dual-light-emitting materials for high-performance optical pattern encryption. These are based on fluorescent perovskite nanocrystals (NCs) embedded in metal-organic frameworks (MOFs) designed for phosphorescent host-guest interactions. Notably, perovskite-containing MOFs emit a highly efficient blue phosphorescence, and perovskite NCs embedded in the MOFs emit characteristic green or red fluorescence under ultraviolet (UV) irradiation. Such dual-light-emitting MOFs with independent fluorescence and phosphorescence emissions are employed in pochoir pattern encryption, wherein actual information with transient phosphorescence is efficiently concealed behind fake information with fluorescence under UV exposure. Moreover, a 3D cubic skeleton is developed with the dual-light-emitting MOF powder dispersed in 3D-printable polymer filaments for 3D dual-pattern encryption. This article outlines a universal principle for developing MOF-based room-temperature multi-light-emitting materials and a strategy for multidimensional information encryption with enhanced capacity and security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...