Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9150, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644364

RESUMO

Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.


Assuntos
DNA Topoisomerases Tipo II , Carcinoma de Células Escamosas de Cabeça e Pescoço , Inibidores da Topoisomerase II , Humanos , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Animais , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Embrião de Galinha
2.
Eur J Med Chem ; 248: 115044, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621139

RESUMO

In cancer cells, Pol η allows DNA replication and cell proliferation even in the presence of chemotherapeutic drug-induced damages, like in the case of platinum-containing drugs. Inhibition of Pol η thus represents a promising strategy to overcome drug resistance and preserve the effectiveness of chemotherapeutic drugs. Here, we report the discovery of a novel class of Pol ƞ inhibitors, with 35 active close analogs. Compound 21 (ARN24964) stands out as the best inhibitor, with an IC50 value of 14.7 µM against Pol η and a good antiproliferative activity when used in combination with cisplatin - with a synergistic effect in three different cancer cell lines (A375, A549, OVCAR3). Moreover, it is characterized by a favorable drug-like profile in terms of its aqueous kinetic solubility, plasma and metabolic stability. Thus, ARN24964 is a promising compound for further structure-based drug design efforts toward developing drugs to solve or limit the issue of drug resistance to platinum-containing drugs in cancer patients.


Assuntos
Neoplasias Ovarianas , Platina , Humanos , Feminino , Apoptose , Linhagem Celular Tumoral , Replicação do DNA , Dano ao DNA
3.
Bioorg Med Chem ; 80: 117179, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716583

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic. The identification of effective antiviral drugs remains an urgent medical need. In this context, here we report 17 new 1,4-benzopyrone derivatives, which have been designed, synthesized, and characterized for their ability to block the RNA-dependent RNA polymerase (RdRp) enzyme, a promising target for antiviral drug discovery. This compound series represents a good starting point for developing non-nucleoside inhibitors of RdRp. Compounds 4, 5, and 8 were the most promising drug-like candidates with good potency in inhibiting RdRp, improved in vitro pharmacokinetics compared to the initial hits, and no cytotoxicity effects on normal cell (HEK-293). Compound 8 (ARN25592) stands out as the most promising inhibitor. Our results indicate that this new chemical class of 1,4-benzopyrone derivatives deserves further exploration towards novel and potent antiviral drugs for the treatment of SARS-CoV-2 and potentially other viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células HEK293 , RNA Polimerase Dependente de RNA , Antivirais/química , Cromonas , Simulação de Acoplamento Molecular
4.
Sci Rep ; 12(1): 10571, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732785

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global health pandemic. Among the viral proteins, RNA-dependent RNA polymerase (RdRp) is responsible for viral genome replication and has emerged as one of the most promising targets for pharmacological intervention against SARS-CoV-2. To this end, we experimentally tested luteolin and quercetin for their ability to inhibit the RdRp enzyme. These two compounds are ancestors of flavonoid natural compounds known for a variety of basal pharmacological activities. Luteolin and quercetin returned a single-digit IC50 of 4.6 µM and 6.9 µM, respectively. Then, through dynamic docking simulations, we identified possible binding modes of these compounds to a recently published cryo-EM structure of RdRp. Collectively, these data indicate that these two compounds are a valid starting point for further optimization and development of a new class of RdRp inhibitors to treat SARS-CoV-2 and potentially other viral infections.


Assuntos
Antivirais , Luteolina , Quercetina , SARS-CoV-2 , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Luteolina/farmacologia , Quercetina/farmacologia , RNA Viral
5.
J Med Chem ; 64(8): 4623-4661, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33818106

RESUMO

Targeting the protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) is a potential therapeutic strategy to control diseases involving oxidative stress. Here, six classes of known small-molecule Keap1-Nrf2 PPI inhibitors were dissected into 77 fragments in a fragment-based deconstruction reconstruction (FBDR) study and tested in four orthogonal assays. This gave 17 fragment hits of which six were shown by X-ray crystallography to bind in the Keap1 Kelch binding pocket. Two hits were merged into compound 8 with a 220-380-fold stronger affinity (Ki = 16 µM) relative to the parent fragments. Systematic optimization resulted in several novel analogues with Ki values of 0.04-0.5 µM, binding modes determined by X-ray crystallography, and enhanced microsomal stability. This demonstrates how FBDR can be used to find new fragment hits, elucidate important ligand-protein interactions, and identify new potent inhibitors of the Keap1-Nrf2 PPI.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Cristalografia por Raios X , Estabilidade de Medicamentos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...