Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10228, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986332

RESUMO

Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Medição de Risco/métodos , Engenharia Tecidual/métodos , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Cardiotoxicidade/prevenção & controle , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Morte Súbita Cardíaca/prevenção & controle , Fibroblastos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Reprodutibilidade dos Testes
2.
J Biomed Mater Res A ; 109(9): 1726-1736, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33733622

RESUMO

A formidable challenge in regenerative medicine is the development of stable microvascular networks to restore adequate blood flow or to sustain graft viability and long-term function in implanted or ischemic tissues. In this work, we develop a biomimetic approach to increase the binding affinity of the extracellular matrix for the class of heparin-binding growth factors to localize and control the release of proangiogenic cues while maintaining their bioactivity. Sulfate and heparin moieties are covalently coupled to alginate, and alginate microspheres are produced and used as local delivery depots for vascular endothelial growth factor (VEGF). Release of VEGF from sulfate-alginate and heparin-alginate bulk hydrogels and microspheres was sustained over 14 days. In vitro evaluation with human induced pluripotent stem cell (hiPSC)-derived endothelial cells and aortic ring assay in a chemically defined hydrogel demonstrates development of primitive three-dimensional vessel-like networks in the presence of VEGF released from the chemically modified alginate microspheres. Furthermore, our results suggest that the sulfate groups available on the chemically modified alginate microspheres promote some new vessel formation even in VEGF-free samples. Based on this evidence, we conclude that sulfate- and heparin-alginate hydrogels are adaptive and bioactive delivery systems for revascularization therapy and translational vascular tissue engineering.


Assuntos
Alginatos/farmacologia , Células Endoteliais/citologia , Heparina/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Microesferas , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Cinética , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Tissue Eng Part A ; 27(11-12): 703-713, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33430704

RESUMO

With this work, we design alginate-based hydrogels for therapeutically directing revascularization and repair processes in vivo. We immobilize pleiotrophin (PTN) in injectable hydrogel formulations as the target factor to stimulate proangiogenic responses in endothelial cells. The optimized heparin-alginate/chitosan hydrogels, produced by internal crosslinking with calcium carbonate, show good biocompatibility and injectability and allow controlling the release of immobilized proteins in the subcutaneous tissue over a period of 7 days. In vitro assays, performed with translational human induced pluripotent stem cell-derived endothelial cells, and the in vivo Matrigel plug assay are conducted to demonstrate the angiogenic effects of PTN on endothelial cells. Our results indicate that PTN stimulates endothelial cell morphogenesis in vitro and the migration of endothelial cells and macrophages as soon as 4 days after injections of the developed hydrogels, promoting the formation of structures similar to the healthy granulation tissue, which is an indicator of healing in ischemic wounds. These studies provide the rationale for further investigating this novel therapeutic for pursuing increased vascular density for efficient regeneration of ischemic tissues, by leveraging the host endothelial cell population to initiate angiogenic and reparative processes in vivo. Impact statement Localized, sustained, and controlled delivery of angiogenic factors is crucial for enabling the formation of novel vascular networks in ischemic tissues. This study describes the development of an injectable heparin-alginate/collagen hydrogel for controlling the in vivo release and bioactivity of pleiotrophin (PTN), a heparin-binding factor with significant angiogenic activity. We demonstrate that PTN promotes angiogenesis in an in vitro model of hypoxia and in preclinical subcutaneous models. These results advance our understanding of PTN function in guiding therapeutic angiogenesis and are critical to inform the development of novel translational strategies for ischemic tissue repair and regeneration.


Assuntos
Heparina , Células-Tronco Pluripotentes Induzidas , Alginatos/farmacologia , Proteínas de Transporte , Citocinas , Células Endoteliais , Heparina/farmacologia , Humanos , Hidrogéis/farmacologia , Morfogênese , Neovascularização Fisiológica
4.
Biomaterials ; 251: 120033, 2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32388033

RESUMO

Heart regeneration after myocardial infarction requires new cardiomyocytes and a supportive vascular network. Here, we evaluate the efficacy of localized delivery of angiogenic factors from biomaterials within the implanted muscle tissue to guide growth of a more dense, organized, and perfused vascular supply into implanted engineered human cardiac tissue on an ischemia/reperfusion injured rat heart. We use large, aligned 3-dimensional engineered tissue with cardiomyocytes derived from human induced pluripotent stem cells in a collagen matrix that contains dispersed alginate microspheres as local protein depots. Release of angiogenic growth factors VEGF and bFGF in combination with morphogen sonic hedgehog from the microspheres into the local microenvironment occurs from the epicardial implant site. Analysis of the 3D vascular network in the engineered tissue via Microfil® perfusion and microCT imaging at 30 days shows increased volumetric network density with a wider distribution of vessel diameters, proportionally increased branching and length, and reduced tortuosity. Global heart function is increased in the angiogenic factor-loaded cardiac implants versus sham. These findings demonstrate for the first time the efficacy of a combined remuscularization and revascularization therapy for heart regeneration after myocardial infarction.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32318563

RESUMO

Coronary artery disease is a severe ischemic condition characterized by the reduction of blood flow in the arteries of the heart that results in the dysfunction and death of cardiac tissue. Despite research over several decades on how to reduce long-term complications and promote angiogenesis in the infarct, the medical field has yet to define effective treatments for inducing revascularization in the ischemic tissue. With this work, we have developed functional biomaterials for the controlled release of immunomodulatory cytokines to direct immune cell fate for controlling wound healing in the ischemic myocardium. The reparative effects of colony-stimulating factor (CSF-1), and anti-inflammatory interleukins 4/6/13 (IL4/6/13) have been evaluated in vitro and in a predictive in vivo model of ischemia (the skin flap model) to optimize a new immunomodulatory biomaterial that we use for treating infarcted rat hearts. Alginate hydrogels have been produced by internal gelation with calcium carbonate (CaCO3) as carriers for the immunomodulatory cues, and their stability, degradation, rheological properties and release kinetics have been evaluated in vitro. CD14 positive human peripheral blood monocytes treated with the immunomodulatory biomaterials show polarization into pro-healing macrophage phenotypes. Unloaded and CSF-1/IL4 loaded alginate gel formulations have been implanted in skin flap ischemic wounds to test the safety and efficacy of the delivery system in vivo. Faster wound healing is observed with the new therapeutic treatment, compared to the wounds treated with the unloaded controls at day 14. The optimized therapy has been evaluated in a rat model of myocardial infarct (ischemia/reperfusion). Macrophage polarization toward healing phenotypes and global cardiac function measured with echocardiography and immunohistochemistry at 4 and 15 days demonstrate the therapeutic potential of the proposed immunomodulatory treatment in a clinically relevant infarct model.

6.
J Vis Exp ; (135)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29863678

RESUMO

As the field of tissue engineering has continued to mature, there has been increased interest in a wide range of tissue parameters, including tissue shape. Manipulating tissue shape on the micrometer to centimeter scale can direct cell alignment, alter effective mechanical properties, and address limitations related to nutrient diffusion. In addition, the vessel in which a tissue is prepared can impart mechanical constraints on the tissue, resulting in stress fields that can further influence both the cell and matrix structure. Shaped tissues with highly reproducible dimensions also have utility for in vitro assays in which sample dimensions are critical, such as whole tissue mechanical analysis. This manuscript describes an alternative fabrication method utilizing negative master molds prepared from laser etched acrylic: these molds perform well with polydimethylsiloxane (PDMS), permit designs with dimensions on the centimeter scale and feature sizes smaller than 25 µm, and can be rapidly designed and fabricated at a low cost and with minimal expertise. The minimal time and cost requirements allow for laser etched molds to be rapidly iterated upon until an optimal design is determined, and to be easily adapted to suit any assay of interest, including those beyond the field of tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/metabolismo , Lasers/estatística & dados numéricos , Engenharia Tecidual/métodos
7.
Int J Artif Organs ; 41(4): 213-222, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29637833

RESUMO

BACKGROUND: To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems. METHODS: Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated. RESULTS: Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected. CONCLUSIONS: Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Sobrevivência Celular , Microambiente Celular , Elasticidade , Glucose/química , Glutamina/química , Humanos , Pectinas/química , Viscosidade
8.
Cell Transplant ; 27(1): 70-76, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562782

RESUMO

Mesenchymal stromal cells from the human amniotic membrane (i.e., human amniotic mesenchymal stromal cells [hAMSCs]) of term placenta are increasingly attracting attention for their applications in regenerative medicine. Osteochondral defects represent a major clinical problem with lifelong chronic pain and compromised quality of life. Great promise for osteochondral regeneration is held in hydrogel-based constructs that have a flexible composition and mimic the physiological structure of cartilage. Cell loading within a hydrogel represents an advantage for regenerative purposes, but the encapsulation steps can modify cell properties. As pectin gels have also been explored as cell vehicles on 3D scaffolds, the aim of this study was to explore the possibility to include hAMSCs in pectin gel. Immobilization of hAMSCs into pectin gels could expand their application in cell-based bioengineering strategies. hAMSCs were analyzed for their viability and recovery from the pectin gel and for their ability to differentiate toward the osteogenic lineage and to maintain their immunological characteristics. When treated with a purposely designed pectin/hydroxyapatite gel biocomposite, hAMSCs retained their ability to differentiate toward the osteogenic lineage, did not induce an immune response, and retained their ability to reduce T cell proliferation. Taken together, these results suggest that hAMSCs could be used in combination to pectin gels for the study of novel osteochondral regeneration strategies.


Assuntos
Âmnio/citologia , Âmnio/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais/citologia , Pectinas/metabolismo , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo
9.
Tissue Eng Part C Methods ; 23(5): 311-321, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28457187

RESUMO

Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all.


Assuntos
Hidrogéis/química , Lasers , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Células Cultivadas , Elasticidade , Humanos , Masculino , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
10.
J Mater Sci Mater Med ; 26(1): 5328, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25577210

RESUMO

Carbomers, cross-linked poly(acrylic acid) microgels, have been widely used in pharmaceutical formulations as swollen hydrogels. Agarose, whose thermoreversibility may be exploited for drug loading, forms a gel with a mechanism involving coil-helix transition at about 36 °C. In this work carbomer microgels were combined with agarose networks in a semi-interpenetrating polymer network structure, aiming at obtaining suitable delivery systems for the loading and release of molecules with poor bioavailability but high therapeutic interest, like resveratrol. The rheological properties of the formulations and their in vitro cytocompatibility were studied and optimized acting on the neutralizing agent (triethylamine (N,N-diethylethanamine), triethanolamine (tris(2-hydroxyethyl)amine) and sodium hydroxide) and amount of OH donors (1,2-propanediol and glycerol). As a preparation method, autoclaving was introduced to simultaneously obtain heating and sterilising. Among the different neutralizing agents, NaOH was chosen to avoid the use of amines, considering the final application. Without the addition of alcohols as typical OH donors to induce Carbomer gelification, gels with appropriate rheological properties and stability were produced. For this formulation, the release of resveratrol after 7 days was about 80 % of the loaded mass, suggesting it is an interesting approach to be exploited for the development of innovative resveratrol delivery systems.


Assuntos
Resinas Acrílicas/química , Reagentes de Ligações Cruzadas/química , Géis , Sefarose/química , Estilbenos/administração & dosagem , Animais , Linhagem Celular , Humanos , Camundongos , Resveratrol , Reologia
11.
Mater Sci Eng C Mater Biol Appl ; 45: 154-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25491814

RESUMO

In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell immobilization. The reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture analysis confirms the possibility of extruding the biocomposites from needles with diameters from 20 G to 30 G, indicating that they can be implanted with minimally-invasive approaches, minimizing the pain during injection and the side effects of the open surgery. L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and exhibit high cell viability. On the overall, these systems result to be suitable supports for the immobilization of cells for tissue regeneration applications.


Assuntos
Materiais Biocompatíveis/química , Hidroxiapatitas/química , Pectinas/química , Análise de Variância , Animais , Materiais Biocompatíveis/síntese química , Linhagem Celular , Células Imobilizadas , Gelatina/química , Hidrogéis/síntese química , Hidrogéis/química , Camundongos , Reologia , Fatores de Tempo
12.
Carbohydr Polym ; 103: 339-47, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24528738

RESUMO

The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was observed for pectin solutions with pH 5.35 or higher. Therefore, pectin solutions with pH values varying from 3.2 (native pH) to 3.8 were chosen to produce the gels. The increase of the pH for the crosslinked hydrogels, as well as the reduction of the gelling time and their thickening, was dependent upon the amount of calcium carbonate, as confirmed by rheology. Hydrogel extracts were not cytotoxic for L-929 fibroblasts. On the overall, the investigated formulations represent interesting injectable systems providing an adequate microenvironment for cell, drug or bioactive molecules delivery.


Assuntos
Hidrogéis/síntese química , Pectinas/síntese química , Géis/síntese química , Géis/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Pectinas/química , Reologia
13.
J Appl Biomater Funct Mater ; 10(2): 67-81, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22865572

RESUMO

Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Regeneração/efeitos dos fármacos , Tecido Adiposo/fisiologia , Materiais Biocompatíveis/química , Regeneração Óssea/efeitos dos fármacos , Cartilagem/fisiologia , Humanos , Hidrogéis/química , Disco Intervertebral/fisiologia , Neurônios/fisiologia , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...