Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 178: 283-295, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33626372

RESUMO

Nanoparticles are interesting area of research developed for several diagnostic and therapeutic applications. Tamarind flower extract is rich in Xyloglucan, a starch like polysaccharide which promotes proliferation and various application areas like drug-delivery technology. In recent years researchers are evaluating nanoliposome using in vitro and in vivo studies to discover their biomedical applications. Considering the importance and feasibility of nanoliposome, the present study is focused on synthesis of liposomes via biological method. The biological molecules of Tamarindus indica flower were used for the synthesis of nanoliposome. The synthesized Tamarindus indica flower extract lipid nanoparticles (TifeLiNPs) loaded with xyloglucans were characterized and evaluated for therapeutic applications (antibacterial, antioxidant, antidiabetic, anticancer and anti-inflammatory activities) under in vitro condition. UV-Vis spectral analysis revealed the emission of peak at 232 nm. Further, the chemical characterization using FTIR revealed the presence of components in the functional group. EDX analysis exhibited the presence of O, Na, P and Cl, while DLS confirmed bilayer formation of xyloglucan and liposomes with uniform size (70-80 nm) and spherical shape. The Physicochemical characterization of tamarind flower extract for its chemical composition revealed the presence of carbohydrates, alkaloids, terpenoids, glycosides, saponins, tannins and flavonoids in confirmatory test. Presence of carbohydrate polymers such as rhamnose, arabinose, galactose, glucose and xylose revealed using high performance anion exchange (HPAE) chromatography under basic conditions on an ion chromatographic system were measured using Pulsed Amperometric Detection (PAD). The synthesized nanoliposome evaluated against Gram negative and Gram positive bacteria showed potential antibacterial activity. TifeLiNPs demonstrated significant in vitro antioxidant potential, antidiabetic, anti-cancer and anti-inflammatory activity. Overall, the present study exhibited the potential application of TifeLiNPs for biomedical purposes.


Assuntos
Flores/química , Glucanos , Nanoestruturas , Extratos Vegetais/química , Tamarindus/química , Xilanos , Avaliação Pré-Clínica de Medicamentos , Glucanos/química , Glucanos/farmacologia , Células HeLa , Humanos , Lipossomos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Xilanos/química , Xilanos/farmacologia
2.
Anal Biochem ; 612: 113970, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961250

RESUMO

Gold nanoparticles (AuNPs) are gaining a lot of attention in recent decades from researchers due to their unique optoelectronic properties and their significance in the field of biomedicine. Keeping this in view, our research work was designed to investigate gold nanoparticles obtained by using a fungal endophytic strain Chaetomium globosum, isolated from Vitex negundo which showed significant activity on enzyme inhibition. In the present study, the fungal isolate C. globosum was characterized using HPLC and LC-MS. A novel compound Catechin was matched with standard Catechin. Further, the endophyte C. globosum extract was utilized to synthesize gold nanoparticles (CgAuNPs) which was analysed by UV-visible spectroscopy. The CgAuNPs exhibited wine red color and the absorption peak appeared at 542 nm confirming the formation of the AuNPs. Further, Fourier Transmission Infrared Spectroscopy (FTIR) was performed to confirm the various functional groups present in mycosynthesized CgAuNPs. FTIR analysis demonstrated the presence of amines, flavonoids, as well as the presence of amide I linkage which possibly reduces Au+ to Au0. The synthesized CgAuNPs exhibited potential cytotoxicity against HeLa cells in a dose dependent manner. Further, CgAuNPs demonstrated significant anti-inflammatory activity. Overall, the present work provides insights into the design of nano delivery and may be applied for clinical studies in future.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Chaetomium/química , Endófitos/química , Ouro/química , Nanopartículas Metálicas/química , Ácido Acético/toxicidade , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina/toxicidade , Catequina/química , Catequina/farmacologia , Catequina/uso terapêutico , Chaetomium/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Endófitos/isolamento & purificação , Endófitos/metabolismo , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoxigenase/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Camundongos , Folhas de Planta/química , Vitex/química , Vitex/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/efeitos dos fármacos
3.
Int J Pharm ; 588: 119729, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768527

RESUMO

Green fabrication of nanoparticles (NPs) using biological sources is the fast-growing trend replacing chemical synthesis via toxic materials. Considering the importance and feasibility of green fabricated NPs, the present research focuses on the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of the endophytic Cladosporium sp. (MycoAuNPs) isolated from Commiphora wightii. The synthesized MycoAuNPs are characterized using UV-Vis spectroscopic, FTIR, X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM). The synthesized NPs showed a sharp absorption peak at 524 nm, with an average size between 5 and 10 nm in a spherical shape. XRD revealed the crystalline nature, and EDX profiling confirmed the presence of gold (Au) and oxygen (O) atoms. The biological potential of MycoAuNPs were tested under both in vitro and in vivo conditions. MycoAuNPs showed anti-cancer activity in breast cancer cell line MCF-7 (IC50 38.23 µg/mL) through the induction of apoptosis. Further, MycoAuNPs showed potential against growth of tumor in tumor-bearing mice models. MycoAuNPs significantly reduced the body weight, ascites volume, and increased the lifespan of EAC bearing mice. It induced apoptosis of the EAC cells, which was confirmed by DNA fragmentation and Giemsa staining. Also, they did not develop any secondary complications or side effects in normal mice. The photocatalytic activity of MycoAuNPs tested against Rhodamine B and Methylene Blue dyes showed potential dye degradation in the presence of sunlight. Thus, the present study gives a clear idea of the multifaceted therapeutic and catalytic applications of the biosynthesized MycoAuNPs.


Assuntos
Cladosporium , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Animais , Química Verde , Camundongos , Microscopia Eletrônica de Transmissão , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...