Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 48(10): 3690-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388421

RESUMO

Posaconazole (POS; SCH 56592) is a novel triazole that is active against a wide variety of fungi, including fluconazole-resistant Candida albicans isolates and fungi that are inherently less susceptible to approved azoles, such as Candida glabrata. In this study, we compared the effects of POS, itraconazole (ITZ), fluconazole (FLZ), and voriconazole (VOR) on sterol biosynthesis in strains of C. albicans (both azole-sensitive and azole-resistant strains), C. glabrata, Aspergillus fumigatus, and Aspergillus flavus. Following exposure to azoles, nonsaponifiable sterols were extracted and resolved by liquid chromatography and sterol identity was confirmed by mass spectroscopy. Ergosterol was the major sterol in all but one of the strains; C. glabrata strain C110 synthesized an unusual sterol in place of ergosterol. Exposure to POS led to a decrease in the total sterol content of all the strains tested. The decrease was accompanied by the accumulation of 14alpha-methylated sterols, supporting the contention that POS inhibits the cytochrome P450 14alpha-demethylase enzyme. The degree of sterol inhibition was dependent on both dose and the susceptibility of the strain tested. POS retained activity against C. albicans isolates with mutated forms of the 14alpha-demethylase that rendered these strains resistant to FLZ, ITZ, and VOR. In addition, POS was a more potent inhibitor of sterol synthesis in A. fumigatus and A. flavus than either ITZ or VOR.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/metabolismo , Aspergillus fumigatus/metabolismo , Candida glabrata/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Triazóis/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Candida glabrata/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Ergosterol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase
2.
J Mass Spectrom ; 37(3): 265-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11921367

RESUMO

A liquid chromatography/mass spectrometry (LC/MS) method for separation and characterization of ergosterol biosynthetic precursors was developed to study the effect of Posaconazole on sterol biosynthesis in fungi. Ergosterol biosynthetic precursors were characterized from their electron ionization mass spectra acquired by a normal-phase chromatography, particle beam LC/MS method. Fragment ions resulting from cleavage across the D-ring and an abundant M - 15 fragment ion were diagnostic for methyl substitution at C-4 and C-14. Comparison of the sterol profile in control and treated Candida albicans incubations showed depletion of ergosterol and accumulation of C-4 and C-14 methyl-substituted sterols following treatment with Posaconazole. These C-4 and C-14 methyl sterols are known to be incapable of sustaining cell growth. The results demonstrate that Posaconazole exerts its antifungal activity by inhibition of ergosterol biosynthesis. Furthermore, Posaconazole appears to disrupt ergosterol biosynthesis by inhibition of lanosterol 14alpha-demethylase.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Ergosterol/biossíntese , Triazóis/farmacologia , Cromatografia Líquida de Alta Pressão , Ergosterol/análise , Lanosterol/análise , Lanosterol/biossíntese , Espectrometria de Massas por Ionização por Electrospray , Esteróis/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...