Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(5): 2018-2025, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621104

RESUMO

Most of today's electronic devices, like solar cells and batteries, are based on nanometer-scale built-in electric fields. Accordingly, characterization of fields at such small scales has become an important task in the optimization of these devices. In this study, with GaAs-based p-n junctions as the example, key characteristics such as doping concentrations, polarity, and the depletion width are derived quantitatively using four-dimensional scanning transmission electron microscopy (4DSTEM). The built-in electric fields are determined by the shift they introduce to the center-of-mass of electron diffraction patterns at subnanometer spatial resolution. The method is applied successfully to characterize two p-n junctions with different doping concentrations. This highlights the potential of this method to directly visualize intentional or unintentional nanoscale electric fields in real-life devices, e.g., batteries, transistors, and solar cells.

2.
ACS Appl Mater Interfaces ; 11(39): 36232-36243, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532611

RESUMO

Silica-based resistive random access memory devices have become an active research area due to complementary metal-oxide-semiconductor compatibility and recent dramatic increases in their performance and endurance. In spite of both experimental and theoretical insights gained into the electroforming process, many atomistic aspects of the set and reset operation of these devices are still poorly understood. Recently a mechanism of electroforming process based on the formation of neutral oxygen vacancies (VO0) and interstitial O ions (Oi2-) facilitated by electron injection into the oxide has been proposed. In this work, we extend the description of the bulk (Oi2-) migration to the interface of amorphous SiO2 with the polycrystaline TiN electrode, using density functional theory simulations. The results demonstrate a strong kinetic and thermodynamic drive for the movement of Oi2- to the interface, with dramatically reduced incorporation energies and migration barriers close to the interface. The arrival of Oi2- at the interface is accompanied by preferential oxidation of undercoordinated Ti sites at the interface, forming a Ti-O layer. We investigate how O ions incorporate into a perfect and defective ∑5(012)[100] grain boundary (GB) in TiN oriented perpendicular to the interface. Our simulations demonstrate the preferential incorporation of Oi at defects within the TiN GB and their fast diffusion along a passivated grain boundary. They explain how, as a result of electroforming, the system undergoes very significant structural changes with the oxide being significantly reduced, interface being oxidized, and part of the oxygen leaving the system.

3.
Faraday Discuss ; 213(0): 151-163, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30371722

RESUMO

We report a study of the relationship between oxide microstructure at the scale of tens of nanometres and resistance switching behaviour in silicon oxide. In the case of sputtered amorphous oxides, the presence of columnar structure enables efficient resistance switching by providing an initial structured distribution of defects that can act as precursors for the formation of chains of conductive oxygen vacancies under the application of appropriate electrical bias. Increasing electrode interface roughness decreases electroforming voltages and reduces the distribution of switching voltages. Any contribution to these effects from field enhancement at rough interfaces is secondary to changes in oxide microstructure templated by interface structure.

4.
J Phys Condens Matter ; 29(24): 245701, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28504974

RESUMO

Using density functional theory (DFT) calculations, we investigated oxygen vacancy diffusion and aggregation in relation to dielectric breakdown in amorphous silicon dioxide (a-SiO2). Our calculations indicate the existence of favourable sites for the formation of vacancy dimers and trimers in the amorphous network with maximum binding energies of approximately 0.13 eV and 0.18 eV, respectively. However, an average energy barrier height for neutral vacancy diffusion is found to be about 4.6 eV, rendering this process unfeasible. At Fermi level positions above 6.4 eV with respect to the top of the valence band, oxygen vacancies can trap up to two extra electrons. Average barriers for the diffusion of negative and double negatively charged vacancies are found to be 2.7 eV and 2.0 eV, respectively. These barriers are higher than or comparable to thermal ionization energies of extra electrons from oxygen vacancies into the conduction band of a-SiO2. In addition, we discuss the competing pathways for electron trapping in oxygen deficient a-SiO2 caused by the existence of intrinsic electron traps and oxygen vacancies. These results provide new insights into the role of oxygen vacancies in degradation and dielectric breakdown in amorphous silicon oxides.

5.
Adv Mater ; 28(34): 7486-93, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27334656

RESUMO

Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field-driven local reordering of a random oxide network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...