Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36481223

RESUMO

Based on the observed circadian rhythms disruptions and sleep abnormalities in bipolar disorders (BD), a chronobiological model has been proposed suggesting that core clock genes play a central role in the vulnerability to the disorder. In this context, the analysis of circadian genes expression levels is particularly relevant, however studies focused on the whole set of core clock genes are scarce. We compared the levels of expression of 19 circadian genes (including the recently described circadian repressor (CIART)) in 37 euthymic individuals with BD and 20 healthy controls (HC), using data obtained by RNA sequencing of lymphoblastoid cell lines and validated the results using RT-qPCR. RNA sequencing data showed that CIART gene expression was correlated with those of ARNTL, ARNTL2, DBP, PER2 and TIMELESS. Data from RNA sequencing showed that the level of expression of four circadian genes (ARNTL, ARNTL2, BHLHE41 and CIART) discriminated individuals with BD from HC. We replicated this result using RT-qPCR for ARNTL and CIART. This study suggests that an imbalance between activation/repression of the transcription within the circadian system in individuals with BD as compared to HC and as such opens avenues for further research in larger independent samples combining both expression and epigenetic analyses.


Assuntos
Transtorno Bipolar , Humanos , Fatores de Transcrição ARNTL/genética , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudos de Casos e Controles , Ritmo Circadiano/genética , Expressão Gênica
2.
Ann Neurol ; 92(1): 122-137, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411967

RESUMO

OBJECTIVE: Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS: Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS: The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION: This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.


Assuntos
Ataxia Cerebelar , Interferon Tipo I , Ataxias Espinocerebelares , Ataxia , Austrália , Exorribonucleases , França , Humanos , Interferon Tipo I/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
3.
Am J Hum Genet ; 97(5): 726-37, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26456284

RESUMO

Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs.


Assuntos
Canais de Cálcio Tipo T/genética , Cálcio/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Mutação/genética , Neurônios/patologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Ataxia Cerebelar/metabolismo , Criança , Eletrofisiologia , Feminino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neurônios/metabolismo , Linhagem , Fenótipo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Homologia de Sequência de Aminoácidos , Adulto Jovem
4.
Ann Neurol ; 78(3): 355-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26017892

RESUMO

OBJECTIVE: CIC gene is frequently mutated in oligodendroglial tumors with 1p19q codeletion. However, clinical and biological impact remain poorly understood. METHODS: We sequenced the CIC gene on 127 oligodendroglial tumors (109 with the 1p19q codeletion) and analyzed patients' outcome. We compared magnetic resonance imaging, transcriptomic profile, and CIC protein expression of CIC wild-type (WT) and mutant gliomas. We compared the level of expression of CIC target genes on Hs683-IDH1(R132H) cells transfected with lentivirus encoding mutant and WT CIC. RESULTS: We found 63 mutations affecting 60 of 127 patients, virtually all 1p19q codeleted and IDH mutated (59 of 60). In the 1p19q codeleted gliomas, CIC mutations were associated with a poorer outcome by uni- (p = 0.001) and multivariate analysis (p < 0.016). CIC mutation prognostic impact was validated on the TCGA cohort. CIC mutant grade II codeleted gliomas spontaneously grew faster than WTs. Transcriptomic analysis revealed an enrichment of proliferative pathways and oligodendrocyte precursor cell gene expression profile in CIC mutant gliomas, with upregulation of normally CIC repressed genes ETV1, ETV4, ETV5, and CCND1. Various missense mutations resulted in CIC protein expression loss. Moreover, a truncating CIC mutation resulted in a defect of nuclear targeting of CIC protein to the nucleus in a human glioma cell line expressing IDH1(R132H) and overexpression of CCND1 and other new target genes of CIC, such as DUSP4 and SPRED1. INTERPRETATION: CIC mutations result in protein inactivation with upregulation of CIC target genes, activation of proliferative pathways, inhibition of differentiation, and poorer outcome in patients with a 1p19q codeleted glioma.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Glioma/genética , Mutação/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Feminino , Deleção de Genes , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Secundária de Proteína , Proteínas Repressoras/química , Adulto Jovem
5.
Neurology ; 84(17): 1751-9, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25841024

RESUMO

OBJECTIVES: In a large family of Algerian origin, we aimed to identify the genetic mutation segregating with simultaneous presence of adult-onset, paucisymptomatic, slowly progressive, cerebellar ataxia in 7 adults and congenital ataxia in 1 child, and then to assess the involvement of GRID2 mutations in 144 patients with congenital cerebellar ataxia. METHODS: We used a combined approach of linkage analysis and whole-exome sequencing in one family, and a targeted gene panel sequencing approach in 144 congenital ataxias. RESULTS: In the large family with spinocerebellar ataxia, we identified a missense mutation (c.1966C>G/p.Leu656Val) in the GRID2 gene, in a heterozygous state in adults, and in a homozygous state in one child with congenital ataxia, compatible with a semidominant transmission pattern. In 144 patients affected with congenital ataxia, we identified 2 missense de novo GRID2 mutations in 2 children (c.1960G>A/p.Ala654Thr, c.1961C>A/p.Ala654Asp). They affect the same amino acid as the previously described Lurcher mutation in mice; the variant in the large family concerns a nearby amino acid. CONCLUSIONS: In humans, GRID2 had only been involved in ataxia through complete loss-of-function mutations due to exon deletions. We report the first point mutations in this gene, with putative gain-of-function mechanisms, and a semidominant transmission as was observed in the Lurcher mice model. Of note, cerebellar ataxia is the core phenotype, but with variable severity ranging from very mild adult-onset to congenital-onset ataxias linked to both the heterozygous and homozygous state of the variant, and the position of the mutation.


Assuntos
Ataxia Cerebelar/genética , Mutação Puntual/genética , Receptores de Glutamato/genética , Adolescente , Adulto , Idoso , Argélia , Ataxia Cerebelar/congênito , Criança , Pré-Escolar , Exoma , Feminino , Ligação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA
6.
Mov Disord ; 30(5): 721-4, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25631824

RESUMO

OBJECTIVE: We analyzed the coding region of the Fused in Sarcoma (FUS) gene in familial essential tremor (ET) and reviewed previous studies assessing FUS variants in ET. BACKGROUND: ET is often a familial disorder with an autosomal dominant inheritance pattern. A potentially causative variant in FUS has been identified in one ET family. Subsequent studies described further putatively causal variants. METHODS: We performed DNA sequencing of FUS in 85 unrelated, familial German and French definite ET patients. RESULTS: We did not find novel variants affecting the protein sequence. Seven previously published studies and data from the exome variant server (EVS) showed that rare exonic variants in FUS are not more frequent in ET than in the general population. CONCLUSIONS: Our findings provide no evidence for a role of rare genetic variants in the pathogenesis of ET, apart from the initially published FUS mutation segregating in a large ET family.


Assuntos
Tremor Essencial/genética , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Bases de Dados Bibliográficas/estatística & dados numéricos , Feminino , França , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade
7.
Neurology ; 84(7): 659-67, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25609768

RESUMO

OBJECTIVE: To present the clinical, molecular, and cell biological findings in a family with an autosomal recessive form of hereditary spastic paraplegia characterized by a combination of spastic paraplegia, optic atrophy, and peripheral neuropathy (SPOAN). METHODS: We used a combination of whole-genome linkage analysis and exome sequencing to map the disease locus and to identify the responsible gene. To analyze the physiologic consequences of the disease, we used biochemical and cell biological methods. RESULTS: Ten members of a highly consanguineous family manifested a childhood-onset SPOAN-like phenotype with slow progression into late adulthood. We mapped this disorder to a locus on chromosome 1q and identified a homozygous donor splice-site mutation in the IBA57 gene, previously implicated in 2 infants with lethal perinatal encephalomyopathy. This gene encodes the mitochondrial iron-sulfur (Fe/S) protein assembly factor IBA57. In addition to a severely decreased amount of normal IBA57 messenger RNA, a patient's cells expressed an aberrantly spliced messenger RNA with a premature stop codon. Lymphoblasts contained 10-fold-lower levels of wild-type, but no signs of truncated IBA57 protein. The decrease in functional IBA57 resulted in reduced levels and activities of several mitochondrial [4Fe-4S] proteins, including complexes I and II, while mitochondrial [2Fe-2S] proteins remained normal. CONCLUSIONS: Our findings reinforce the suggested specific function of IBA57 in mitochondrial [4Fe-4S] protein maturation and provide additional evidence for its role in human disease. The less decreased IBA57 protein level in this family explains phenotypic differences compared with the previously described lethal encephalomyopathy with no functional IBA57.


Assuntos
Proteínas de Transporte/genética , Mutação , Paraplegia Espástica Hereditária/genética , Adulto , Idoso , Proteínas de Transporte/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Família , Feminino , Ligação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Linhagem , Fenótipo , Splicing de RNA/genética , RNA Mensageiro/metabolismo
8.
Neurology ; 83(11): 990-5, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25098532

RESUMO

OBJECTIVE: The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. METHODS: We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). RESULTS: We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. CONCLUSIONS: ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Paralisia Supranuclear Progressiva/genética , Ataxinas , Proteína C9orf72 , Estudos de Coortes , Análise Mutacional de DNA , França , Predisposição Genética para Doença , Heterozigoto , Humanos , Peptídeos/genética , Fatores de Risco
9.
Neurology ; 82(23): 2101-6, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24814846

RESUMO

OBJECTIVE: To study the prevalence of DEPDC5 mutations in a series of 30 small European families with a phenotype compatible with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). METHODS: Thirty unrelated families referred with ADNFLE were recruited in France, Italy, Germany, Belgium, and Norway. Whole-exome sequencing was performed in 10 probands and direct sequencing of the DEPDC5 coding sequence in 20 probands. Testing for nonsense-mediated messenger RNA decay (NMD) was performed in lymphoblastic cells. RESULTS: Exome sequencing revealed a splice acceptor mutation (c.2355-2A>G) in DEPDC5 in the proband of a German family. In addition, 3 nonsense DEPDC5 mutations (p.Arg487*, p.Arg1087*, and p.Trp1369*) were detected in the probands of 2 French and one Belgian family. The nonsense mutations p.Arg487* and p.Arg1087* were targeted by NMD, leading to the degradation of the mutated transcripts. At the clinical level, 78% of the patients with DEPDC5 mutations were drug resistant. CONCLUSIONS: DEPDC5 loss-of-function mutations were found in 13% of the families with a presentation of ADNFLE. The rate of drug resistance was high in patients with DEPDC5 mutations. Small ADNFLE pedigrees with DEPDC5 mutations might actually represent a part of the broader familial focal epilepsy with variable foci phenotype.


Assuntos
Mutação/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cromossomos Humanos Par 22/genética , Resistência a Medicamentos/genética , Epilepsia do Lobo Frontal/genética , Europa (Continente) , Exoma/genética , Feminino , Proteínas Ativadoras de GTPase , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
10.
J Neurooncol ; 118(1): 131-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24590827

RESUMO

TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly in astrocytic tumors. The majority of studies dedicated to TP53 in gliomas were focused on mutational hotspots located in exons 5-8. Recent studies have suggested that TP53 is also mutated outside the classic mutational hotspots reported in gliomas. Therefore, we have sequenced all TP53 coding exons in a retrospective series of 61 low grade gliomas (LGG) using high throughput sequencing technology. In addition, TP53 mutational status was correlated with: (i) p53 expression, (ii) tumor type, (iii) chromosome arms 1p/19q status and (iv) clinical features of patients. The cohort included 32 oligodendrogliomas (O), 21 oligoastrocytomas (M) and 8 astrocytomas (A). TP53 mutation was detected in 52.4% (32/61) of tumors (34% of O, 71.4% of M and 75% of A). All mutations (38 mutations in 32 samples) were detected in exons 4, 5, 6, 7, 8 and 10. Missense and non-missense mutations, including seven novel mutations, were detected in 42.6 and 9.8% of tumors respectively. TP53 mutations were almost mutually exclusive with 1p/19q co-deletion and were associated with: (i) astrocytic phenotype, (ii) younger age, (iii) p53 expression. Using a threshold of 10% p53-positive tumor cells, p53 expression is an interesting surrogate marker for missense TP53 mutations (Se = 92%; Sp = 79.4%) but not for non-missense mutation (18.4% of mutations). TP53 and p53 statuses were not prognostic in LGG. In conclusion, we have identified novel TP53 mutations in LGG. TP53 mutations outside exons 4-8 are rare. Although it remains imperfect, p53 expression with a threshold of 10% is a good surrogate marker for missense TP53 mutations and appears helpful in the setting of LGG phenotype diagnosis.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Mutação/genética , Proteína Supressora de Tumor p53/genética , Adulto , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 19 , Éxons/genética , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Análise de Sobrevida
11.
Am J Hum Genet ; 94(2): 268-77, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24388663

RESUMO

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurological conditions. Their main pathogenic mechanisms are thought to involve alterations in endomembrane trafficking, mitochondrial function, and lipid metabolism. With a combination of whole-genome mapping and exome sequencing, we identified three mutations in REEP2 in two families with HSP: a missense variant (c.107T>A [p.Val36Glu]) that segregated in the heterozygous state in a family with autosomal-dominant inheritance and a missense change (c.215T>A [p.Phe72Tyr]) that segregated in trans with a splice site mutation (c.105+3G>T) in a family with autosomal-recessive transmission. REEP2 belongs to a family of proteins that shape the endoplasmic reticulum, an organelle that was altered in fibroblasts from an affected subject. In vitro, the p.Val36Glu variant in the autosomal-dominant family had a dominant-negative effect; it inhibited the normal binding of wild-type REEP2 to membranes. The missense substitution p.Phe72Tyr, in the recessive family, decreased the affinity of the mutant protein for membranes that, together with the splice site mutation, is expected to cause complete loss of REEP2 function. Our findings illustrate how dominant and recessive inheritance can be explained by the effects and nature of mutations in the same gene. They have also important implications for genetic diagnosis and counseling in clinical practice because of the association of various modes of inheritance to this new clinico-genetic entity.


Assuntos
Proteínas de Membrana/genética , Paraplegia Espástica Hereditária/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Mapeamento Cromossômico , Exoma , Feminino , Heterozigoto , Humanos , Masculino , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/patologia
12.
PLoS One ; 8(10): e76831, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130795

RESUMO

Mutations in PLA2G6 gene have variable phenotypic outcome including infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, idiopathic neurodegeneration with brain iron accumulation and Karak syndrome. The cause of this phenotypic variation is so far unknown which impairs both genetic diagnosis and appropriate family counseling. We report detailed clinical, electrophysiological, neuroimaging, histologic, biochemical and genetic characterization of 11 patients, from 6 consanguineous families, who were followed for a period of up to 17 years. Cerebellar atrophy was constant and the earliest feature of the disease preceding brain iron accumulation, leading to the provisional diagnosis of a recessive progressive ataxia in these patients. Ultrastructural characterization of patients' muscle biopsies revealed focal accumulation of granular and membranous material possibly resulting from defective membrane homeostasis caused by disrupted PLA2G6 function. Enzyme studies in one of these muscle biopsies provided evidence for a relatively low mitochondrial content, which is compatible with the structural mitochondrial alterations seen by electron microscopy. Genetic characterization of 11 patients led to the identification of six underlying PLA2G6 gene mutations, five of which are novel. Importantly, by combining clinical and genetic data we have observed that while the phenotype of neurodegeneration associated with PLA2G6 mutations is variable in this cohort of patients belonging to the same ethnic background, it is partially influenced by the genotype, considering the age at onset and the functional disability criteria. Molecular testing for PLA2G6 mutations is, therefore, indicated in childhood-onset ataxia syndromes, if neuroimaging shows cerebellar atrophy with or without evidence of iron accumulation.


Assuntos
Fosfolipases A2 do Grupo VI/genética , Mutação , Fenótipo , Adolescente , Adulto , Árabes , Criança , Pré-Escolar , Consanguinidade , Eletroencefalografia , Potenciais Evocados Visuais/genética , Feminino , Seguimentos , Genótipo , Humanos , Lactente , Masculino , Músculos/patologia , Músculos/fisiopatologia , Condução Nervosa/genética , Distrofias Neuroaxonais/etnologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/fisiopatologia , Neuroimagem , Linhagem , Adulto Jovem
13.
Am J Hum Genet ; 93(1): 118-23, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23746551

RESUMO

Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes ß-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis.


Assuntos
Disfunção Cognitiva/genética , Gangliosídeos/biossíntese , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idade de Início , Brasil , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Exoma , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Gangliosídeos/genética , Predisposição Genética para Doença , Alemanha , Homozigoto , Humanos , Lactente , Metabolismo dos Lipídeos , Masculino , Mutação de Sentido Incorreto , Linhagem , Portugal , Espanha , Paraplegia Espástica Hereditária/metabolismo , Tunísia , Adulto Jovem
14.
Nat Genet ; 45(5): 552-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542701

RESUMO

The main familial focal epilepsies are autosomal dominant nocturnal frontal lobe epilepsy, familial temporal lobe epilepsy and familial focal epilepsy with variable foci. A frameshift mutation in the DEPDC5 gene (encoding DEP domain-containing protein 5) was identified in a family with focal epilepsy with variable foci by linkage analysis and exome sequencing. Subsequent pyrosequencing of DEPDC5 in a cohort of 15 additional families with focal epilepsies identified 4 nonsense mutations and 1 missense mutation. Our findings provided evidence of frequent (37%) loss-of-function mutations in DEPDC5 associated with a broad spectrum of focal epilepsies. The implication of a DEP (Dishevelled, Egl-10 and Pleckstrin) domain-containing protein that may be involved in membrane trafficking and/or G protein signaling opens new avenues for research.


Assuntos
Encéfalo/patologia , Epilepsias Parciais/genética , Exoma/genética , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Adolescente , Adulto , Sequência de Aminoácidos , Encéfalo/metabolismo , Estudos de Casos e Controles , Criança , Estudos de Coortes , Biologia Computacional , Epilepsias Parciais/diagnóstico , Feminino , Ligação Genética , Genoma Humano , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
15.
Am J Hum Genet ; 92(2): 238-44, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23332916

RESUMO

Spastic paraplegia 46 refers to a locus mapped to chromosome 9 that accounts for a complicated autosomal-recessive form of hereditary spastic paraplegia (HSP). With next-generation sequencing in three independent families, we identified four different mutations in GBA2 (three truncating variants and one missense variant), which were found to cosegregate with the disease and were absent in controls. GBA2 encodes a microsomal nonlysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide and the hydrolysis of bile acid 3-O-glucosides. The missense variant was also found at the homozygous state in a simplex subject in whom no residual glucocerebrosidase activity of GBA2 could be evidenced in blood cells, opening the way to a possible measurement of this enzyme activity in clinical practice. The overall phenotype was a complex HSP with mental impairment, cataract, and hypogonadism in males associated with various degrees of corpus callosum and cerebellar atrophy on brain imaging. Antisense morpholino oligonucleotides targeting the zebrafish GBA2 orthologous gene led to abnormal motor behavior and axonal shortening/branching of motoneurons that were rescued by the human wild-type mRNA but not by applying the same mRNA containing the missense mutation. This study highlights the role of ceramide metabolism in HSP pathology.


Assuntos
Neurônios Motores/patologia , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/genética , Proteínas de Peixe-Zebra/genética , beta-Glucosidase/genética , Adolescente , Adulto , Idoso , Animais , Encéfalo/patologia , Criança , Pré-Escolar , Família , Feminino , Glucosilceramidase , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neuroimagem , Linhagem , Adulto Jovem , Peixe-Zebra
16.
Eur J Hum Genet ; 20(6): 645-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22258533

RESUMO

The hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterised by progressive spasticity in the lower limbs. The nosology of autosomal recessive forms is complex as most mapped loci have been identified in only one or a few families and account for only a small percentage of patients. We used next-generation sequencing focused on the SPG30 chromosomal region on chromosome 2q37.3 in two patients from the original linked family. In addition, wide genome scan and candidate gene analysis were performed in a second family of Palestinian origin. We identified a single homozygous mutation, p.R350G, that was found to cosegregate with the disease in the SPG30 kindred and was absent in 970 control chromosomes while affecting a strongly conserved amino acid at the end of the motor domain of KIF1A. Homozygosity and linkage mapping followed by mutation screening of KIF1A allowed us to identify a second mutation, p.A255V, in the second family. Comparison of the clinical features with the nature of the mutations of all reported KIF1A families, including those reported recently with hereditary sensory and autonomic neuropathy, suggests phenotype-genotype correlations that may help to understand the mechanisms involved in motor neuron degeneration. We have shown that mutations in the KIF1A gene are responsible for SPG30 in two autosomal recessive HSP families. In published families, the nature of the KIF1A mutations seems to be of good predictor of the underlying phenotype and vice versa.


Assuntos
Cinesinas/genética , Mutação de Sentido Incorreto , Paraplegia Espástica Hereditária/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Família , Genes Recessivos , Heterogeneidade Genética , Homozigoto , Humanos , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/metabolismo
17.
Ann Neurol ; 72(6): 859-69, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280837

RESUMO

OBJECTIVE: To identify the causative gene in spinocerebellar ataxia (SCA) 22, an autosomal dominant cerebellar ataxia mapped to chromosome 1p21-q23. METHODS: We previously characterized a large Chinese family with progressive ataxia designated SCA22, which overlaps with the locus of SCA19. The disease locus in a French family and an Ashkenazi Jewish American family was also mapped to this region. Members from all 3 families were enrolled. Whole exome sequencing was performed to identify candidate mutations, which were narrowed by linkage analysis and confirmed by Sanger sequencing and cosegregation analyses. Mutational analyses were also performed in 105 Chinese and 55 Japanese families with cerebellar ataxia. Mutant gene products were examined in a heterologous expression system to address the changes in protein localization and electrophysiological functions. RESULTS: We identified heterozygous mutations in the voltage-gated potassium channel Kv4.3-encoding gene KCND3: an in-frame 3-nucleotide deletion c.679_681delTTC p.F227del in both the Chinese and French pedigrees, and a missense mutation c.1034G>T p.G345V in the Ashkenazi Jewish family. Direct sequencing of KCND3 further identified 3 mutations, c.1034G>T p.G345V, c.1013T>C p.V338E, and c.1130C>T p.T377M, in 3 Japanese kindreds. Immunofluorescence analyses revealed that the mutant p.F227del Kv4.3 subunits were retained in the cytoplasm, consistent with the lack of A-type K(+) channel conductance in whole cell patch-clamp recordings. INTERPRETATION: Our data identify the cause of SCA19/22 in patients of diverse ethnic origins as mutations in KCND3. These findings further emphasize the important role of ion channels as key regulators of neuronal excitability in the pathogenesis of cerebellar degeneration.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Canais de Potássio Shal/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Povo Asiático/genética , Cromossomos Humanos Par 1 , Análise Mutacional de DNA , Saúde da Família , Feminino , Ligação Genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Transfecção , Adulto Jovem
18.
Hum Mutat ; 32(10): 1118-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21618648

RESUMO

Hereditary spastic paraplegias (HSP) constitute a heterogeneous group of neurodegenerative disorders characterized at least by slowly progressive spasticity of the lower limbs. Mutations in REEP1 were recently associated with a pure dominant HSP, SPG31. We sequenced all exons of REEP1 and searched for rearrangements by multiplex ligation-dependent probe amplification (MLPA) in a large panel of 175 unrelated HSP index patients from kindreds with dominant inheritance (AD-HSP), with either pure (n = 102) or complicated (n = 73) forms of the disease, after exclusion of other known HSP genes. We identified 12 different heterozygous mutations, including two exon deletions, associated with either a pure or a complex phenotype. The overall mutation rate in our clinically heterogeneous sample was 4.5% in French families with AD-HSP. The phenotype was restricted to pyramidal signs in the lower limbs in most patients but nine had a complex phenotype associating axonal peripheral neuropathy (= 5/11 patients) including a Silver-like syndrome in one patient, and less frequently cerebellar ataxia, tremor, dementia. Interestingly, we evidenced abnormal mitochondrial network organization in fibroblasts of one patient in addition to defective mitochondrial energy production in both fibroblasts and muscle, but whether these anomalies are directly or indirectly related to the mutations remains uncertain.


Assuntos
Proteínas de Membrana Transportadoras/genética , Mitocôndrias/metabolismo , Mutação , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Pré-Escolar , Metabolismo Energético , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Taxa de Mutação , Linhagem , Fenótipo , Deleção de Sequência , Paraplegia Espástica Hereditária/metabolismo , Adulto Jovem
20.
Ophthalmology ; 118(3): 564-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21035867

RESUMO

OBJECTIVE: Kjellin's syndrome is a hereditary neuro-ophthalmologic syndrome. We describe the clinical phenotypes of 7 patients, identifying the responsible mutations for 4 of them. A 10-year ophthalmologic and neurologic follow-up of 5 patients allowed us to describe the disease's characteristics, early symptoms and progression, associated ocular signs, and retinal changes in carriers. DESIGN: Retrospective clinical study and molecular genetics investigation. PARTICIPANTS: The records of 7 patients with Kjellin's syndrome were analyzed retrospectively. METHODS: All patients underwent full neurologic and ophthalmologic examinations. The neurologic examinations included assessments of initial symptoms, intelligence quotient tests, psychologic tests, and either magnetic resonance imaging or computed tomography. The ophthalmologic examinations included visual acuity on an Early Treatment Diabetic Retinopathy Study chart, intraocular pressure color vision assessment, slit-lamp and fundus examination, Goldmann perimetry, fundus autofluorescence, optical coherence tomography and fluorescein angiography, electro-oculography, electroretinography, and flash visual evoked potentials. Direct sequencing of the SPG11 and SPG15 genes and gene-dosage analysis for the former were performed for 4 of these index patients. MAIN OUTCOME MEASURES: Identification of new mutations in the SPG11 gene, validating its implication in Kjellin's syndrome. RESULTS: The first signs appear before the age of 10 years, with late verbal development and difficulty running and walking. Life expectancy is between 30 and 40 years. The secondary ophthalmologic symptoms only moderately affect visual acuity. In addition to the classic symptoms, 3 of the 7 patients displayed small whitish lens opacities, and 3 neurologically unaffected parents (father or mother), all heterozygous carriers, exhibited whitish retinal dots. All the patients who were tested carried SPG11, not SPG15, mutations. CONCLUSIONS: Neurologic signs of SPG11 mutations emerge in early infancy, with walking and language difficulties. Onset of paraplegia occurs at the end of the first decade or during the second decade. Retinal changes, an integral part of SPG11 mutations in this series of patients, are only observed once the paraplegia has become apparent.


Assuntos
Mutação , Paraplegia/genética , Proteínas/genética , Doenças Retinianas/genética , Adulto , Consanguinidade , Análise Mutacional de DNA , Técnicas de Diagnóstico Oftalmológico , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Paraplegia/diagnóstico , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Doenças Retinianas/diagnóstico , Estudos Retrospectivos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Acuidade Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...