Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(10): 2195-2210, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37874216

RESUMO

Lipid droplets (LD) are dynamic organelles that serve as hubs of cellular metabolic processes. Emerging evidence shows that LDs also play a critical role in maintaining redox homeostasis and can mitigate lipid oxidative stress. In multiple cancers, including prostate cancer, LD accumulation is associated with cancer aggressiveness, therapy resistance, and poor clinical outcome. Prostate cancer arises as an androgen receptor (AR)-driven disease. Among its myriad roles, AR mediates the biosynthesis of LDs, induces autophagy, and modulates cellular oxidative stress in a tightly regulated cycle that promotes cell proliferation. The factors regulating the interplay of these metabolic processes downstream of AR remain unclear. Here, we show that Sigma1/SIGMAR1, a unique ligand-operated scaffolding protein, regulates LD metabolism in prostate cancer cells. Sigma1 inhibition triggers lipophagy, an LD selective form of autophagy, to prevent accumulation of LDs which normally act to sequester toxic levels of reactive oxygen species (ROS). This disrupts the interplay between LDs, autophagy, buffering of oxidative stress and redox homeostasis, and results in the suppression of cell proliferation in vitro and tumor growth in vivo. Consistent with these experimental results, SIGMAR1 transcripts are strongly associated with lipid metabolism and ROS pathways in prostate tumors. Altogether, these data reveal a novel, pharmacologically responsive role for Sigma1 in regulating the redox homeostasis required by oncogenic metabolic programs that drive prostate cancer proliferation. SIGNIFICANCE: To proliferate, cancer cells must maintain productive metabolic and oxidative stress (eustress) while mitigating destructive, uncontrolled oxidative stress (distress). LDs are metabolic hubs that enable adaptive responses to promote eustress. Targeting the unique Sigma1 protein can trigger distress by disrupting the LD-mediated homeostasis required for proliferation.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Gotículas Lipídicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Próstata/genética , Homeostase/fisiologia , Oxirredução
2.
J Microsc ; 291(1): 57-72, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36455264

RESUMO

Polarised nonlinear microscopy has been extensively developed to study molecular organisation in biological tissues, quantifying the response of nonlinear signals to a varying incident linear polarisation. Polarisation Second harmonic Generation (PSHG) in particular is a powerful tool to decipher sub-microscopic modifications of fibrillar collagen organisation in type I and III collagen-rich tissues. The quality of SHG imaging is however limited to about one scattering mean free path in depth (typically 100 micrometres in biological tissues), due to the loss of focus quality, induced by wavefront aberrations and scattering at even larger depths. In this work, we study how optical depth penetration in biological tissues affects the quality of polarisation control, a crucial parameter for quantitative assessment of PSHG measurements. We apply wavefront shaping to correct for SHG signal quality in two regimes, adaptive optics for smooth aberration modes corrections at shallow depth, and wavefront shaping of higher spatial frequencies for optical focus correction at larger depths. Using nonlinear SHG active nanocrystals as guide stars, we quantify the capabilities of such optimisation methods to recover a high-quality linear polarisation and investigate how this approach can be applied to in-depth PSHG imaging in tissues, namely tendon and mouse cranial bone.


Assuntos
Colágeno , Microscopia , Animais , Camundongos , Microscopia/métodos , Colágeno/química
3.
J Phys Chem B ; 121(13): 2759-2766, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28301724

RESUMO

The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of each CAPTR product depends to varying extents on the original solution, the charge state of the product, and the charge state of the precursor. For example, the Ω distributions of the 6+ ions depend strongly on the original solutions conditions and to a lesser extent on the charge state of the precursor. Energy-dependent experiments suggest that very different structures are accessible to disulfide-reduced and disulfide-intact ions, but similar Ω distributions are formed at high energy for disulfide-intact ions from denaturing and from aqueous conditions. The Ω distributions of the 3+ ions are all similar but exhibit subtle differences that depend more strongly on the original solutions conditions than other factors. More generally, these results suggest that specific CAPTR products may be especially sensitive to specific elements of structure in solution.


Assuntos
Muramidase/química , Animais , Galinhas , Clara de Ovo/química , Gases/química , Íons/química , Muramidase/metabolismo , Conformação Proteica , Dobramento de Proteína , Soluções
4.
J Am Soc Mass Spectrom ; 28(7): 1382-1391, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28224394

RESUMO

The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than ~4. Graphical Abstract ᅟ.

5.
J Am Chem Soc ; 138(30): 9581-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27399988

RESUMO

The structure and folding of a protein in solution depends on noncovalent interactions within the protein and those with surrounding ions and molecules. Decoupling these interactions in solution is challenging, which has hindered the development of accurate physics-based models for structure prediction. Investigations of proteins in the gas phase can be used to selectively decouple factors affecting the structures of proteins. Here, we use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of denatured ubiquitin ions in the gas phase, and ion mobility to probe their structures. In CAPTR, a precursor charge state is selected (P) and reacted with monoanions to generate charge-reduced product ions (C). Following each CAPTR event, denatured ubiquitin ions (13+ to 6+) yield products that rapidly isomerize to structures that have smaller collision cross sections (Ω). The Ω values of CAPTR product ions depend strongly on C and very weakly on P. Pre- and post-CAPTR activation was then used to probe the potential-energy surfaces of the precursor and product ions, respectively. Post-CAPTR activation showed that ions of different P fold differently and populate different regions of the potential-energy surface of that ion. Finally, pre-CAPTR activation showed that the structures of protein ions can be indirectly investigated using ion mobility of their CAPTR product ions, even for subtle structural differences that are not apparent from ion mobility characterization of the activated precursor ions. More generally, these results show that CAPTR strongly complements existing techniques for characterizing the structures and dynamics of biological molecules in the gas phase.


Assuntos
Gases/química , Dobramento de Proteína , Prótons , Ubiquitina/química , Animais , Bovinos , Desnaturação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...