Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 45(4): 404-10, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27037705

RESUMO

Some insect species are capable of producing an enhanced immune response after a first pathogenic encounter, a process called immune priming. However, whether and how such ability is driven by particular diet components (protein/carbohydrate) have not been explored. Such questions are sound given that, in general, immune response is dietary dependent. We have used adults of the house cricket Acheta domesticus L. (Orthoptera: Gryllidae) and exposed them to the bacteria Serratia marcescens. We first addressed whether survival rate after priming and nonpriming treatments is dietary dependent based on access/no access to proteins and carbohydrates. Second, we investigated how these dietary components affected fat reserves, muscle mass, and body weight, three key traits in insect fitness. Thus, we exposed adult house crickets to either a protein or a carbohydrate diet and measured the three traits. After being provided with protein, primed animals survived longer compared to the other diet treatments. Interestingly, this effect was also sex dependent with primed males having a higher survival than primed females when protein was supplemented. For the second experiment, protein-fed animals had more fat, muscle mass, and body weight than carbohydrate-fed animals. Although we are not aware of the immune component underlying immune priming, our results suggest that its energetic demand for its functioning and/or consequent survival requires a higher demand of protein with respect to carbohydrate. Thus, protein shortage can impair key survival-related traits related to immune and energetic condition. Further studies varying nutrient ratios should verify our results.


Assuntos
Dieta , Comportamento Alimentar , Gryllidae/fisiologia , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Feminino , Masculino , Músculos/metabolismo
2.
J Evol Biol ; 28(11): 2119-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26284698

RESUMO

Hormones underlie the decision of assuming a territorial or a nonterritorial role, with territorial individuals usually having higher hormonal levels than nonterritorial individuals. As a territorial status is linked to higher mating opportunities, it is unclear why animals do not keep high hormonal levels and one explanation is that this would imply survival costs. We have tested this using males of the territorial damselfly Argia emma in the field. We increased juvenile hormone (JH) levels using methoprene in both territorial and nonterritorial males and predicted that: (i) males will keep (the case of territorial males) or become (the case of nonterritorial males) territorial after hormonal increase, and (ii) there will be an increase in mating success for nonterritorial males only and an impaired survival for both male tactics. Hormonally treated males remained or became territorial but had their survival impaired compared with control groups. Also, hormonally treated, ex-nonterritorial males increased their mating success compared with the other control, nonterritorial males. The reduced survival can be explained proximally by the energy devoted either to the enhanced aggression showed during territory defence or immune function (as detected previously in damselflies). Although nonterritorial males may increase their mating success by switching to a territorial tactic, they are possibly unable to do it naturally as JH is dietary dependent and usually nonterritorial animals are in poorer condition than territorial animals.


Assuntos
Insetos/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Territorialidade
3.
Neotrop Entomol ; 43(4): 357-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27193814

RESUMO

Hormones are key regulators of resource allocation among functions and thus play an important role in resource-based trade-offs. The juvenile hormone (JH) is an insect hormone that mediates resource allocation between immunity and life history components. Here, we have tested whether this is the case using the house cricket. We investigated whether increased levels of JH (using methoprene, a JH analog) enable an enhanced survival and fecundity (via egg number) at the cost of reduced hemocyte number (a trait that is associated with immune response in insects) in the house cricket, Acheta domesticus L. We had three groups of adult crickets of both sexes: experimental (methoprene and acetone), positive control (methoprene), and negative control (no manipulation). Prior to and after experimental treatments, we counted the number of hemocytes (for the case of both sexes) and recorded the number of eggs laid and survival of females after the manipulation. There was no difference in hemocyte number, egg number, and survival. These results do not support a JH-mediated trade-off among immune ability, survival, and fecundity. We provide arguments to explain the lack of JH-mediated trade-offs in the house cricket.


Assuntos
Fertilidade , Gryllidae/imunologia , Hormônios Juvenis/fisiologia , Metoprene/farmacologia , Animais , Feminino , Estágios do Ciclo de Vida , Masculino
4.
J Evol Biol ; 23(1): 175-84, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20069722

RESUMO

There is a gap in terms of the supposed survival differences recorded in the field according to individual condition. This is partly due to our inability to assess survival in the wild. Here we applied modern statistical techniques to field-gathered data in two damselfly species whose males practice alternative reproductive tactics (ARTs) and whose indicators of condition in both sexes are known. In Paraphlebia zoe, there are two ART: a larger black-winged (BW) male which defends mating territories and a smaller hyaline-winged (HW) male that usually acts as a satellite. In this species, condition in both morphs is correlated with body size. In Calopteryx haemorrhoidalis, males follow tactics according to their condition with males in better condition practicing a territorial ART. In addition, in this species, condition correlates positively with wing pigmentation in both sexes. Our prediction for both species was that males practicing the territorial tactic will survive less longer than males using a nonterritorial tactic, and larger or more pigmented animals will survive for longer. In P. zoe, BW males survived less than females but did not differ from HW males, and not necessarily larger individuals survived for longer. In fact, size affected survival but only when group identity was analysed, showing a positive relationship in females and a slightly negative relationship in both male morphs. For C. haemorrhoidalis, survival was larger for more pigmented males and females, but size was not a good survival predictor. Our results partially confirm assumptions based on the maintenance of ARTs. Our results also indicate that female pigmentation, correlates with a fitness component - survival - as proposed by recent sexual selection ideas applied to females.


Assuntos
Insetos/fisiologia , Longevidade , Comportamento Sexual Animal , Animais , Tamanho Corporal , Feminino , Insetos/anatomia & histologia , Masculino , Modelos Biológicos , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA