Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9706, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678104

RESUMO

This article presents a one-step ultrasonication technique for generating biomass carbon dots (BCDs) from neem bark (Azadirachta indica) powder. The BCDs were characterized using modern techniques such as UV-Vis, FTIR, Raman, XRD, HRTEM, FESEM, EDAX, and Zeta potential analyses. Unlike traditional nanocomposite bed systems, this study utilized BCDs as a liquid-phase adsorbent for the regenerative adsorption of the environmentally harmful dye, methylene blue (MB), through an in-situ precipitation reaction. This involved the formation of BCDs-MB adduct via an electrostatic mechanism. The adsorption capacity and percentage of removal were remarkable at 605 mg g-1 and 64.7% respectively, exceeding various solid-based adsorption methods in the literature. The Langmuir isotherm and pseudo-second-order kinetics model provided an excellent fit for this system. The calculated thermodynamic parameter, Gibbs free energy change (ΔG) was negative, indicating a spontaneous, exothermic, and physisorption-based mechanism. The regenerative capacity of our system was further demonstrated by successfully extracting and recovering the MB dye (64%) using ethyl alcohol as the solvent. This method provides an efficient means of recovering valuable cationic organic dye compounds from contaminated environments.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38468008

RESUMO

The objective of this study was to completely eliminate environmentally harmful cationic organic dye from aqueous solutions using the one-step ultrasonication method, renowned for its energy efficiency, user-friendliness, and minimal requirement for chemical resources, making it particularly suitable for large-scale applications. To achieve effective environmental remediation, we employed carbon dots derived from teak leaf biomass (TBCDs) layered with graphene oxide. We conducted a thorough characterization of the TBCDs using UV-vis spectroscopy (with absorption peaks at λmax = 208 and 276 nm), FTIR spectroscopy (confirming the presence of various functional groups including -OH, -CH, C = O, COO-, C-O-C, and = C-H), Raman spectroscopy (with bands at 1369 cm-1 (D-Band) and 1550 cm-1 (G-Band), and an intensity ratio (ID/IG) = 0.88, indicating structural defects correlated with the sp3 hybridization sites on the TBCDs), XRD analysis (indicating an amorphous nature of particles), HRTEM imaging (showing homogeneous dispersal of TBCDs with typical sizes ranging from 2 to 10 nm), FESEM analysis (showing a flat surface and minuscule particles), and Zeta potential analysis (revealing a surface charge peak at -51.0 mV). Our adsorption experiments yielded significant results, with a substantial 50.1 % removal rate and an impressive adsorption capacity of 735.2 mg g-1. Theoretical adsorption parameters were rigorously analyzed to understand the adsorption behavior, surface interactions, and mechanisms. Among these models, the Langmuir isotherm in conjunction with pseudo-second-order kinetics provided an exceptional fit (with R2 values closer to 1) for our system. The Gibbs free energy (ΔG) was found to be negative at all temperatures, indicating the spontaneity of the reaction. Regarding mechanism, electrostatic attraction ((+ve) MB dye + (- ve) TBCDs), π-π stacking adsorption facilitated by the graphitic structure, formation of multiple hydrogen bonds due to polar functional groups, and a pore-filling mechanism wherein the cationic MB dye fills the pores of TBCDs with graphene oxide layers, forming an adduct were identified. Furthermore, we demonstrated the regenerative capacity of our system by effectively extracting and recovering the MB dye (with a regeneration rate of 77.1%), utilizing ethyl alcohol as the solvent. These findings not only provide valuable insights into the adsorption capabilities of TBCDs but also highlight the potential of our approach in the recovery of expensive cationic organic dye compounds from polluted environments.

3.
J Chromatogr A ; 1537: 21-26, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29373127

RESUMO

A rapid, sensitive, selective, and simple method for monitoring dimethylamine borane (DMAB) in aqueous sample is proposed by combining microwave-assisted de-complexation, headspace liquid phase in-situ derivatization extraction, and high-performance liquid chromatography-fluorescence detection for the determination of DMAB in samples. The present procedure involves de-complexation of DMAB using microwave irradiation, evolution of dimethylamine (DMA) to the headspace from an alkalized sample solution, and dynamic headspace liquid-phase derivatization extraction (Dy-HS-LPDE) of DMA with 9-fluorenylmethyl chloroformate in a syringe barrel. In addition to the optimal Dy-HS-LPDE and chromatographic parameters described in our previous study, the de-complexation of DMAB by thermal and microwave-assisted procedures and evolution of DMA into the headspace from an alkalized solution and modification of the Dy-HS-LPDE method are thoroughly investigated. The results indicate that complete de-complexation was obtained at 70 °C for 5 min, 30 °C for 10 min, or using microwave irradiation for 30 s at any applied power. It indicates that the DMAB complex easily undergoes de-complexation under microwave irradiation. The linearity range was 0.01-0.5 mg L-1 for DMAB and 0.0077-0.38 mg L-1 for DMA, with a coefficient of determination of 0.9995, and limit of detection of 3 µg L-1 (limit of quantitation of 10 µg L-1) for DMAB. The recoveries of DMAB are 95.3% (3.0% RSD) for waste water when spiked 0.05 mg L-1 and 93.5% (5.4% RSD) for the samples spiked with copper and nickel salts (5 mM each in the spiked waste sample). The whole analytical procedure can be completed within 25 min. The results confirm that the present method is a rapid, sensitive, selective, automated, low-cost and eco-friendly procedure to identify DMAB in samples.


Assuntos
Boranos/química , Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Micro-Ondas , Dimetilaminas/química , Fluorescência , Extração Líquido-Líquido , Água/química
4.
J Chromatogr A ; 1296: 104-10, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23591526

RESUMO

A novel one-step headspace (HS) dynamic in-syringe (DIS) based liquid-phase derivatization-extraction (LPDE) technique has been developed for the selective determination of two short-chain aliphatic amines (SCAAs) in aqueous samples using high performance liquid chromatography (HPLC) with fluorescence detection (FLD). Methylamine (MA) and dimethylamine (DMA) were selected as model compounds of SCAAs. In this method, a micro-syringe pre-filled with derivatizing reagent solution (9-fluorenylmethyl chloroformate) in the barrel was applied to achieve the simultaneous derivatization and extraction of two methylamines evolved from alkalized aqueous samples through the automated reciprocated movements of syringe plunger. After the derivatization-extraction process, the derivatized phase was directly injected into HPLC-FLD for analysis. Parameters influencing the evolution of methylamines and the HS-DIS-LPDE efficiency, including sample pH and temperature, sampling time, as well as the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger movements, were thoroughly examined and optimized. Under optimal conditions, detections were linear in the range of 25-500µgL(-1) for MA and DMA with correlation coefficients all above 0.995. The limits of detection (based on S/N=3) were 5 and 19ngmL(-1) for MA and DMA, respectively. The applicability of the developed method was demonstrated for the determination of MA and DMA in real water samples without any prior cleanup of the sample. The present method provides a simple, selective, automated, low cost and eco-friendly procedure to determine aliphatic amines in aqueous samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Extração Líquido-Líquido/instrumentação , Extração Líquido-Líquido/métodos , Metilaminas/análise , Espectrometria de Fluorescência/métodos , Boratos/química , Calibragem , Fluorenos/química , Metilaminas/química , Metilaminas/isolamento & purificação , Temperatura , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
5.
Anal Chim Acta ; 754: 54-60, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23140954

RESUMO

A new simultaneous derivatization and extraction method for the preconcentration of ammonia using new one-step headspace dynamic in-syringe liquid-phase microextraction with in situ derivatization was developed for the trace determination of ammonium in aqueous samples by liquid chromatography with fluorescence detection (LC-FLD). The acceptor phase (as derivatization reagent) containing o-phthaldehyde and sodium sulfite was held within a syringe barrel and immersed in the headspace of sample container. The gaseous ammonia from the alkalized aqueous sample formed a stable isoindole derivative with the acceptor phase inside the syringe barrel through the reciprocated movements of plunger. After derivatization-cum-extraction, the acceptor phase was directly injected into LC-FLD for analysis. Parameters affecting the ammonia evolution and the extraction/derivatization efficiency such as sample matrix, pH, temperature, sampling time, and the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger, were studied thoroughly. Results indicated that the maximum extraction efficiency was obtained by using 100µL derivatization reagent in a 1-mL gastight syringe under 8 reciprocated movements of plunger per min to extract ammonia evolved from a 20mL alkalized aqueous solution at 70°C (preheated 4min) with 380rpm stirring for 8min. The detection was linear in the concentration range of 0.625-10µM with the correlation coefficient of 0.9967 and detection limit of 0.33µM (5.6ng mL(-1)) based on SN(-1)=3. The method was applied successfully to determine ammonium in real water samples without any prior cleanup of the samples, and has been proved to be a simple, sensitive, efficient and cost-effective procedure for trace ammonium determination in aqueous samples.


Assuntos
Fluorescência , Microextração em Fase Líquida/métodos , Compostos de Amônio Quaternário/análise , Água/química , Cromatografia Líquida de Alta Pressão
6.
J Chromatogr A ; 1207(1-2): 130-5, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18760797

RESUMO

A modified headspace liquid-phase microextraction (HS-LPME) method was studied for the extraction of chlorophenols (CPs) from aqueous samples with complicated matrices, before gas chromatographic (GC) analysis with electron capture detection (ECD). Microwave heating was applied to accelerate the evaporation of CPs into the headspace, and an external-cooling system was used to control the sampling temperature. Conditions influencing extraction efficiency, such as the LPME-solvent, the sampling position of LPME, the sampling temperature, microwave power, and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly optimized. Experimental results indicated that the extraction of CPs from a 10mL aquatic sample (pH 1.0) was achieved with the best efficiency through the use of 1-octanol as solvent, microwave irradiation of 167W, and sampling at 45 degrees C for 10min. The detections were linear in the concentration of 5.0-100microg/L for 2,4-dichlorophenol (2,4-DCP), and 0.5-10microg/L for 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Detection limits were found to be 0.7, 0.04, 0.07, and 0.08microg/L for 2,4-DCP, 2,4,6-TCP, 2,3,4,6-TeCP, and PCP, respectively. A landfill leachate sample was analyzed with recovery between 83 and 102%. The present method was proven to serve as a simple, sensitive, and rapid procedure for CP analysis in an aqueous sample.


Assuntos
Métodos Analíticos de Preparação de Amostras , Clorofenóis/análise , Cromatografia Gasosa/métodos , Métodos Analíticos de Preparação de Amostras/instrumentação , Métodos Analíticos de Preparação de Amostras/métodos , Micro-Ondas
7.
Anal Bioanal Chem ; 388(2): 377-83, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17356817

RESUMO

A new cloud vapor zone (CVZ)-based headspace solid-phase microextraction (HS-SPME) technique has been demonstrated with the capability of heating the sample matrix and simultaneously cooling the sampling zone. A bi-temperature-controlled (BTC) system, allowing 10 mL of test sample heating and headspace external-cooling, was employed for the CVZ formation around the SPME-fiber sampling area. In the CVZ procedure, the heated headspace vapor undergoes a sudden cooling near the SPME to form a dense cloud of analyte-water vapor, which is helpful for adsorption or absorption of the analyte. The device was evaluated for the quantitative analysis of aqueous chlorothalonil. Parameters influencing sampling efficiency, e.g., SPME fiber coating, SPME sampling temperature and time, solution modifier, addition of salt, sample pH, and temperature, were investigated and optimized thoroughly. The proposed BTC-HS-SPME method afforded a best extraction efficiency of above 94% accuracy (less than 4.1% RSD, n=7) by using the PDMS fiber to collect chlorothalonil in the headspace at 5 degrees C under the optimized condition, i.e., heating sample solution (added as 10% ethylene glycol and 30% NaCl, at pH 7.0) at 130 degrees C for 15 min. The detection was linear from 0.01 to 80 microg L-1 with a regression coefficient of 0.9998 and had a detection limit of 3.0 ng L-1 based on S/N=3. Practical application was demonstrated by analyzing chlorothalonil in farm water samples with promising results and recoveries. The approach provided a very simple, fast, sensitive, and solvent-free procedure to collect analytes from aqueous solution. The approach can provide a new platform for other sensitive HS-SPME assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...