Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 3: e793, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780758

RESUMO

Background. Studies of ancestry are difficult in the tomato because it crosses with many wild relatives and species in the tomato clade that have diverged very recently. As a result, the phylogeny in relation to its closest relatives remains uncertain. By using the coding sequence from Solanum lycopersicum, S. galapagense, S. pimpinellifolium, S. corneliomuelleri, and S. tuberosum and the genomic sequence from S. lycopersicum 'Heinz', an heirloom line, S. lycopersicum 'Yellow Pear', and two of cultivated tomato's closest relatives, S. galapagense and S. pimpinellifolium, we have aimed to resolve the phylogenies of these closely related species as well as identify phylogenetic discordance in the reference cultivated tomato. Results. Divergence date estimates suggest that the divergence of S. lycopersicum, S. galapagense, and S. pimpinellifolium happened less than 0.5 MYA. Phylogenies based on 8,857 coding sequences support grouping of S. lycopersicum and S. galapagense, although two secondary trees are also highly represented. A total of 25 genes in our analysis had sites with evidence of positive selection along the S. lycopersicum lineage. Whole genome phylogenies showed that while incongruence is prevalent in genomic comparisons between these genotypes, likely as a result of introgression and incomplete lineage sorting, a primary phylogenetic history was strongly supported. Conclusions. Based on analysis of these genotypes, S. galapagense appears to be closely related to S. lycopersicum, suggesting they had a common ancestor prior to the arrival of an S. galapagense ancestor to the Galápagos Islands, but after divergence of the sequenced S. pimpinellifolium. Genes showing selection along the S. lycopersicum lineage may be important in domestication or selection occurring post-domestication. Further analysis of intraspecific data in these species will help to establish the evolutionary history of cultivated tomato. The use of an heirloom line is helpful in deducing true phylogenetic information of S. lycopersicum and identifying regions of introgression from wild species.

2.
Theor Appl Genet ; 127(8): 1843-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24985065

RESUMO

KEY MESSAGE: Fine mapping by recombinant backcross populations revealed that a preharvest sprouting QTL on 2B contained two QTLs linked in coupling with different effects on the phenotype. Wheat preharvest sprouting (PHS) occurs when grain germinates on the plant before harvest, resulting in reduced grain quality. Previous mapping of quantitative trait locus (QTL) revealed a major PHS QTL, QPhs.cnl-2B.1, located on chromosome 2B significant in 16 environments that explained from 5 to 31 % of the phenotypic variation. The objective of this project was to fine map the QPhs.cnl-2B.1 interval. Fine mapping was carried out in recombinant backcross populations (BC1F4 and BC1F5) that were developed by backcrossing selected doubled haploids to a recurrent parent and self-pollinating the BC1F4 and BC1F5 generations. In each generation, three markers in the QPhs.cnl-2B.1 interval were used to screen for recombinants. Fine mapping revealed that the QPhs.cnl-2B.1 interval contained two PHS QTLs linked in coupling. The distal PHS QTL, located between Wmc453c and Barc55, contributed 8 % of the phenotypic variation and also co-located with a major seed dormancy QTL determined by germination index. The proximal PHS QTL, between Wmc474 and CNL415-rCDPK, contributed 16 % of the variation. Several candidate genes including Mg-chelatase H subunit family protein, GTP-binding protein and calmodulin/Ca(2+)-dependent protein kinase were linked to the PHS QTL. Although many recombinant lines were identified, the lack of polymorphism for markers in the QTL interval prevented the localization of the recombination breakpoints and identification of the gene underlying the phenotype.


Assuntos
Cromossomos de Plantas/genética , Mapeamento Físico do Cromossomo/métodos , Locos de Características Quantitativas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Cruzamentos Genéticos , Marcadores Genéticos , Homozigoto , Fenótipo , Dormência de Plantas/genética , Recombinação Genética/genética
3.
Genetics ; 194(1): 265-77, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475987

RESUMO

Quantitative phenotypic traits are influenced by genetic and environmental variables as well as the interaction between the two. Underlying genetic × environment interaction is the influence that the surrounding environment exerts on gene expression. Perturbation of gene expression by environmental factors manifests itself in alterations to gene co-expression networks and ultimately in phenotypic plasticity. Comparative gene co-expression networks have been used to uncover biological mechanisms that differentiate tissues or other biological factors. In this study, we have extended consensus and differential Weighted Gene Co-Expression Network Analysis to compare the influence of different growing environments on gene co-expression in the mature wheat (Triticum aestivum) embryo. This network approach was combined with mapping of individual gene expression QTL to examine the genetic control of environmentally static and variable gene expression. The approach is useful for gene expression experiments containing multiple environments and allowed for the identification of specific gene co-expression modules responsive to environmental factors. This procedure identified conserved coregulation of gene expression between environments related to basic developmental and cellular functions, including protein localization and catabolism, vesicle composition/trafficking, Golgi transport, and polysaccharide metabolism among others. Environmentally unique modules were found to contain genes with predicted functions in responding to abiotic and biotic environmental variables. These findings represent the first report using consensus and differential Weighted Gene Co-expression Network Analysis to characterize the influence of environment on coordinated transcriptional regulation.


Assuntos
Meio Ambiente , Sementes/embriologia , Sementes/genética , Triticum/embriologia , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Ligação Genética , Locos de Características Quantitativas/genética
4.
Funct Integr Genomics ; 11(3): 479-90, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21468744

RESUMO

Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.


Assuntos
Brachypodium/genética , Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Receptores de Superfície Celular/genética , Ácido Abscísico/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Estudos de Associação Genética , Marcadores Genéticos , Dormência de Plantas/genética , Mapas de Interação de Proteínas , Triticum/genética
5.
Theor Appl Genet ; 119(7): 1223-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19669633

RESUMO

The premature germination of seeds before harvest, known as preharvest sprouting (PHS), is a serious problem in all wheat growing regions of the world. In order to determine genetic control of PHS resistance in white wheat from the relatively uncharacterized North American germplasm, a doubled haploid population consisting of 209 lines from a cross between the PHS resistant variety Cayuga and the PHS susceptible variety Caledonia was used for QTL mapping. A total of 16 environments were used to detect 15 different PHS QTL including a major QTL, QPhs.cnl-2B.1, that was significant in all environments tested and explained from 5 to 31% of the trait variation in a given environment. Three other QTL QPhs.cnl-2D.1, QPhs.cnl-3D.1, and QPhs.cnl-6D.1 were detected in six, four, and ten environments, respectively. The potentially related traits of heading date (HD), plant height (HT), seed dormancy (DOR), and rate of germination (ROG) were also recorded in a limited number of environments. HD was found to be significantly negatively correlated with PHS score in most environments, likely due to a major HD QTL, QHd.cnl-2B.1, found to be tightly linked to the PHS QTL QPhs.cnl-2B.1. Using greenhouse grown material no overlap was found between seed dormancy and the four most consistent PHS QTL, suggesting that greenhouse environments are not representative of field environments. This study provides valuable information for marker-assisted breeding for PHS resistance, future haplotyping studies, and research into seed dormancy.


Assuntos
Mapeamento Cromossômico , Germinação/genética , Locos de Características Quantitativas , Sementes/genética , Triticum/genética , Cromossomos de Plantas , Cruzamentos Genéticos , Meio Ambiente , Haploidia , Poliploidia
6.
Genome Res ; 13(8): 1818-27, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12902377

RESUMO

The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to crop species has revolutionized molecular genetics and crop improvement strategies. This study compared 4485 expressed sequence tags (ESTs) that were physically mapped in wheat chromosome bins, to the public rice genome sequence data from 2251 ordered BAC/PAC clones using BLAST. A rice genome view of homologous wheat genome locations based on comparative sequence analysis revealed numerous chromosomal rearrangements that will significantly complicate the use of rice as a model for cross-species transfer of information in nonconserved regions.


Assuntos
DNA de Plantas/análise , Genoma de Planta , Oryza/genética , Análise de Sequência de DNA/métodos , Triticum/genética , Mapeamento Cromossômico , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Ordem dos Genes/genética , Genes de Plantas/genética , Poaceae/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...