Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923138

RESUMO

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

2.
Nat Biotechnol ; 41(7): 911-912, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37308688
3.
J Exp Bot ; 74(15): 4308-4323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37220077

RESUMO

Abiotic stresses such as drought and heat continue to impact crop production in a warming world. This review distinguishes seven inherent capacities that enable plants to respond to abiotic stresses and continue growing, although at a reduced rate, to achieve a productive yield. These are the capacities to selectively take up essential resources, store them and supply them to different plant parts, generate the energy required for cellular functions, conduct repairs to maintain plant tissues, communicate between plant parts, manage existing structural assets in the face of changed circumstances, and shape-shift through development to be efficient in different environments. By illustration, we show how all seven plant capacities are important for reproductive success of major crop species during drought, salinity, temperature extremes, flooding, and nutrient stress. Confusion about the term 'oxidative stress' is explained. This allows us to focus on the strategies that enhance plant adaptation by identifying key responses that can be targets for plant breeding.


Assuntos
Melhoramento Vegetal , Estresse Fisiológico , Estresse Fisiológico/fisiologia , Plantas/genética , Adaptação Fisiológica , Estresse Oxidativo
4.
Front Plant Sci ; 14: 1120583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909408

RESUMO

Crop yields must increase to meet the demands of a growing world population. Soil salinization is increasing due to the impacts of climate change, reducing the area of arable land for crop production. Plant root systems are plastic, and their architecture can be modulated to (1) acquire nutrients and water for growth, and (2) respond to hostile soil environments. Saline soils inhibit primary root growth and alter root system architecture (RSA) of crop plants. In this review, we explore how crop root systems respond and adapt to salinity, focusing predominately on the staple cereal crops wheat, maize, rice, and barley, that all play a major role in global food security. Cereal crops are classified as glycophytes (salt-sensitive) however salt-tolerance can differ both between species and within a species. In the past, due to the inherent difficulties associated with visualising and measuring root traits, crop breeding strategies have tended to focus on optimising shoot traits. High-resolution phenotyping techniques now make it possible to visualise and measure root traits in soil systems. A steep, deep and cheap root ideotype has been proposed for water and nitrogen capture. Changes in RSA can be an adaptive strategy to avoid saline soils whilst optimising nutrient and water acquisition. In this review we propose a new model for designing crops with a salt-tolerant root ideotype. The proposed root ideotype would exhibit root plasticity to adapt to saline soils, root anatomical changes to conserve energy and restrict sodium (Na+) uptake, and transport mechanisms to reduce the amount of Na+ transported to leaves. In the future, combining high-resolution root phenotyping with advances in crop genetics will allow us to uncover root traits in complex crop species such as wheat, that can be incorporated into crop breeding programs for yield stability in saline soils.

5.
J Proteomics ; 256: 104502, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35093570

RESUMO

The impact of salinity on wheat plants is often studied by analysis of shoot responses, even though the main mechanism of tolerance is shoot Na+ exclusion. Wheat roots directly experience rising NaCl concentrations and show more physiological responses in root tips than in mature roots and altered responses with time; but the molecular reason for these differential responses is unclear. We have found that there is a distinct difference between the proteome responses of wheat root tip and mature root tissues to salinity. Translation and protein synthesis related proteins showed a significant decrease in abundance, most of the glycolytic enzymes and selected TCA cycle enzymes and ATP synthase subunits were significantly decreased in abundance under salt stress in root tips only. The root tip response in wheat indicates the protein synthesis capacity and energy production were impaired under salt stress which correlated with the anatomical response of root growth decrease and its respiratory rate. Wheat root responses are direct and rapid effects of the soil salinity in this species, therefore shoot responses such as reduction in shoot growth and photosynthetic capacity need to be considered in light of these effects on root metabolism. SIGNIFICANCE: Salinity is a critical environmental factor limiting crop production throughout the world. Wheat (Triticum aestivum) is the most significant cereal crop for human nutrition and both its growth and yield is negatively impacted by salinity. Salinity stress is known to impose osmotic stress in plants during the initial phase of exposure and ion toxicity in the later stages of development. Roots are the first plant organ to perceive the salt. However, intensive breading approaches to develop salt tolerant crops have mainly focussed on exclusion of salt from above ground tissues, and only achieved limited success to date. Wheat roots physiologically respond to salinity by overall reduction in the length of seminal roots. The stunting of the wheat root system is considered to be a result of higher sensitivity of root tips to salinity. However, the metabolic changes that underpin selective root tip sensitivity is largely unknown. Here, we carried out non-targeted profiling of mature root versus root tip proteomes under control and salt stress conditions. We found distinct changes in abundance of proteins involved in carbon and energy metabolism and protein metabolism in mature roots and root tips in response to salt stress. We further investigated the impact of these changes on metabolic machinery in the wheat root proteome using a targeted MS approach. We found evidence that protein synthesis and energy production machinery becomes limiting in root tips, while the same processes in mature root remains less affected by salt stress. Our proteomic data explain the impairment of root growth and physiological characteristics as well as improve the understanding of wheat root responses under salinity which is an essential first step for further investigation of molecular traits underpinning root characteristics to improve salt tolerance of wheat.


Assuntos
Salinidade , Triticum , Humanos , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Proteômica , Tolerância ao Sal , Estresse Fisiológico , Triticum/metabolismo
6.
Funct Plant Biol ; 48(6): 588-596, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581744

RESUMO

Soil salinity affects sugarcane (Saccharum officinale L.) production in arid and semiarid climates, severely reducing productivity. This study aimed to identify differentially regulated proteins in two cultivars that differ markedly in tolerance of saline soil. Plants were grown for 30 days and then subjected to treatments of 0 and 160 mM NaCl for 15 days. The tolerant cultivar showed a 3-fold upregulation of lipid metabolising enzymes, GDSL-motif lipases, which are associated with defence to abiotic stress, and which were not upregulated in the sensitive cultivar. Lipoxygenase was 2-fold upregulated in the tolerant cultivar but not in the sensitive cultivar, as were Type III chlorophyll a/b binding proteins. Other differences were that in the sensitive cultivar, the key enzyme of C4 photosynthesis, phosphoenolpyruvate carboxylase was downregulated, along with other chloroplast enzymes. Na+ concentrations had not reached toxic concentrations in either cultivar by this time of exposure to salt, so these changes would be in response to the osmotic effect of the soil salinity, and likely be in common with plants undergoing drought stress.


Assuntos
Saccharum , Tolerância ao Sal , Clorofila A , Proteômica , Saccharum/genética , Salinidade
7.
Funct Plant Biol ; 47(12): 1138-1146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32693907

RESUMO

Dissemination of new knowledge is arguably the most critical component of the academic activity. In this context, scientific publishing is a pinnacle of any research work. Although the scientific content has always been the primary measure of a paper's impact, by itself it may not always be sufficient for maximum impact. Good scientific writing and ability to meet priority characteristics of the target journal are essential, and inability to meet appropriate standards may jeopardise the chances for dissemination of results. This paper analyses the key features necessary for successfully publishing scientific research manuscripts. Conclusions are validated by a survey of 22 international scientific journals in agriculture and plant biology whose editors-in-chief have provided current data on key features related to manuscript acceptance or rejection. The top priorities for manuscript rejection by scientific journals in agriculture and plant biology are: (1) lack of sufficient novelty; (2) flaws in methods or data interpretation; (3) inadequate data analyses; and (4) poor critical scientific thinking. The inability to meet these requirements may result in rejection of even the best set of data. Recommendations are made for critical thinking and integration of good scientific writing with quality research. These recommendations will improve the quality of manuscripts submitted for publication to scientific journals and hence improve their likelihood of acceptance.


Assuntos
Editoração , Redação , Padrões de Referência , Inquéritos e Questionários
8.
New Phytol ; 225(3): 1072-1090, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31004496

RESUMO

Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.


Assuntos
Produtos Agrícolas/fisiologia , Metabolismo Energético , Tolerância ao Sal/fisiologia , Transporte Biológico , Respiração Celular , Raízes de Plantas/anatomia & histologia
9.
New Phytol ; 225(3): 1091-1096, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006123

RESUMO

Plant roots must exclude almost all of the Na+ and Cl- in saline soil while taking up water, otherwise these ions would build up to high concentrations in leaves. Plants evaporate c. 50 times more water than they retain, so 98% exclusion would result in shoot NaCl concentrations equal to that of the external medium. Taking up just 2% of the NaCl allows a plant to osmotically adjust the Na+ and Cl- in vacuoles, while organic solutes provide the balancing osmotic pressure in the cytoplasm. We quantify the costs of this exclusion by roots, the regulation of Na+ and Cl- transport through the plant, and the costs of osmotic adjustment with organic solutes in roots.


Assuntos
Metabolismo Energético , Osmose , Desenvolvimento Vegetal , Salinidade , Solo/química , Raízes de Plantas/metabolismo
11.
Plant Cell Physiol ; 59(10): 1976-1989, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917153

RESUMO

Our previous studies showed that high salt tolerance in Tibetan wild barley accessions was associated with HvHKT1;1, a member of the high-affinity potassium transporter family. However, molecular mechanisms of HvHKT1;1 for salt tolerance and its roles in K+/Na+ homeostasis remain to be elucidated. Functional characterization of HvHKT1;1 was conducted in the present study. NaCl-induced transcripts of HvHKT1;1 were significantly higher in the roots of Tibetan wild barley XZ16 relative to other genotypes, being closely associated with its higher biomass and lower tissue Na+ content under salt stress. Heterologous expression of HvHKT1;1 in Saccharomyces cerevisiae (yeast) and Xenopus laevis oocytes showed that HvHKT1;1 had higher selectivity for Na+ over K+ and other monovalent cations. HvHKT1;1 was found to be localized at the cell plasma membrane of root stele and epidermis. Knock-down of HvHKT1;1 in barley led to higher Na+ accumulation in both roots and leaves, while overexpression of HvHKT1;1 in salt-sensitive Arabidopsis hkt1-4 and sos1-12 loss-of-function lines resulted in significantly less shoot and root Na+ accumulation. Additionally, microelectrode ion flux measurements and root elongation assay revealed that the transgenic Arabidopsis plants exhibited a remarkable capacity for regulation of Na+, K+, Ca2+ and H+ homeostasis under salt stress. These results indicate that HvHKT1;1 is critical in radial root Na+ transport, which eventually reduces shoot Na+ accumulation. Additionally, HvHKT1;1 may be indirectly involved in retention of K+ and Ca2+ in root cells, which also improves plant salt tolerance.


Assuntos
Hordeum/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Hordeum/efeitos dos fármacos , Hordeum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/fisiologia , Tolerância ao Sal/genética , Sódio/metabolismo , Xenopus laevis/fisiologia
12.
Plant Sci ; 269: 47-55, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606216

RESUMO

The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na+ ions to cell wall components might influence the passage of Na+ and that Na+ can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.


Assuntos
Produtos Agrícolas/fisiologia , Salinidade , Solo/química , Estresse Fisiológico , Parede Celular/enzimologia , Celulose/química , Produtos Agrícolas/enzimologia , Produtos Agrícolas/crescimento & desenvolvimento , Microfibrilas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Polissacarídeos/metabolismo , Água/metabolismo
13.
Cell Mol Life Sci ; 75(6): 1133-1144, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29177534

RESUMO

An important trait associated with the salt tolerance of wheat is the exclusion of sodium ions (Na+) from the shoot. We have previously shown that the sodium transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na+-exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression, we show that the affinity (K m) for the Na+ transport of TmHKT1;5-A, at 2.66 mM, is higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling, we identify residues D471/a gap and D474/G473 that contribute to this property. We identify four additional mutations in amino acid residues that inhibit the transport activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the pore. We propose that the underlying transport properties of TmHKT1;5-A and TaHKT1;5-D contribute to their unique ability to improve Na+ exclusion in wheat that leads to an improved salinity tolerance in the field.


Assuntos
Proteínas de Transporte de Cátions/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Brotos de Planta/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Simportadores/química , Triticum/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Transporte de Íons , Cinética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Simportadores/genética , Simportadores/metabolismo , Termodinâmica , Triticum/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
J Exp Bot ; 68(12): 3129-3143, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472512

RESUMO

Salt stress impacts multiple aspects of plant metabolism and physiology. For instance it inhibits photosynthesis through stomatal limitation, causes excessive accumulation of sodium and chloride in chloroplasts, and disturbs chloroplast potassium homeostasis. Most research on salt stress has focused primarily on cytosolic ion homeostasis with few studies of how salt stress affects chloroplast ion homeostasis. This review asks the question whether membrane-transport processes and ionic relations are differentially regulated between glycophyte and halophyte chloroplasts and whether this contributes to the superior salt tolerance of halophytes. The available literature indicates that halophytes can overcome stomatal limitation by switching to CO2 concentrating mechanisms and increasing the number of chloroplasts per cell under saline conditions. Furthermore, salt entry into the chloroplast stroma may be critical for grana formation and photosystem II activity in halophytes but not in glycophytes. Salt also inhibits some stromal enzymes (e.g. fructose-1,6-bisphosphatase) to a lesser extent in halophyte species. Halophytes accumulate more chloride in chloroplasts than glycophytes and appear to use sodium in functional roles. We propose the molecular identities of candidate transporters that move sodium, chloride and potassium across chloroplast membranes and discuss how their operation may regulate photochemistry and photosystem I and II activity in chloroplasts.


Assuntos
Cloroplastos/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio/metabolismo , Transporte de Íons
15.
J Exp Bot ; 67(3): 835-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26585227

RESUMO

Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na(+)/H(+) exchanger in both root cortical and stelar tissues. Net Na(+) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na(+)/H(+) exchanger) and was mirrored by net H(+) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na(+) content. One enhances the retrieval of Na(+) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na(+) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na(+) delivery to the shoot.


Assuntos
Loci Gênicos , Proteínas de Plantas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Íons , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Potássio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética
16.
Funct Plant Biol ; 43(12): 1103-1113, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32480530

RESUMO

For a plant to persist in saline soil, osmotic adjustment of all plant cells is essential. The more salt-tolerant species accumulate Na+ and Cl- to concentrations in leaves and roots that are similar to the external solution, thus allowing energy-efficient osmotic adjustment. Adverse effects of Na+ and Cl- on metabolism must be avoided, resulting in a situation known as 'tissue tolerance'. The strategy of sequestering Na+ and Cl- in vacuoles and keeping concentrations low in the cytoplasm is an important contributor to tissue tolerance. Although there are clear differences between species in the ability to accommodate these ions in their leaves, it remains unknown whether there is genetic variation in this ability within a species. This viewpoint considers the concept of tissue tolerance, and how to measure it. Four conclusions are drawn: (1) osmotic adjustment is inseparable from the trait of tissue tolerance; (2) energy-efficient osmotic adjustment should involve ions and only minimal organic solutes; (3) screening methods should focus on measuring tolerance, not injury; and (4) high-throughput protocols that avoid the need for control plants and multiple Na+ or Cl- measurements should be developed. We present guidelines to identify useful genetic variation in tissue tolerance that can be harnessed for plant breeding of salt tolerance.

17.
New Phytol ; 208(3): 668-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26108441

RESUMO

Soil salinity reduces crop yield. The extent and severity of salt-affected agricultural land is predicted to worsen as a result of inadequate drainage of irrigated land, rising water tables and global warming. The growth and yield of most plant species are adversely affected by soil salinity, but varied adaptations can allow some crop cultivars to continue to grow and produce a harvestable yield under moderate soil salinity. Significant costs are associated with saline soils: the economic costs to the farming community and the energy costs of plant adaptations. We briefly consider mechanisms of adaptation and highlight recent research examples through a lens of their applicability to improving the energy efficiency of crops under saline field conditions.


Assuntos
Adaptação Fisiológica , Produtos Agrícolas/economia , Metabolismo Energético , Plantas Tolerantes a Sal/fisiologia , Biomassa , Salinidade
18.
Ann Bot ; 115(3): 419-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25466549

RESUMO

BACKGROUND: Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na(+) and Cl(-)) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na(+) and/or Cl(-) in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K(+) (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. SCOPE: This review discusses the evidence for Na(+) and Cl(-) toxicity and the concept of tissue tolerance in relation to halophytes. CONCLUSIONS: The data reviewed here suggest that halophytes tolerate cytoplasmic Na(+) and Cl(-) concentrations of 100-200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability.


Assuntos
Tolerância ao Sal , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Salinidade , Estresse Fisiológico
19.
Plant J ; 80(3): 516-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25158883

RESUMO

Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sódio/metabolismo , Simportadores/genética , Triticum/genética , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Oócitos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tolerância ao Sal , Análise de Sequência de DNA , Simportadores/metabolismo , Transgenes , Triticum/citologia , Triticum/metabolismo , Xenopus laevis , Xilema/metabolismo
20.
Funct Plant Biol ; 41(3): v-vi, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480981
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...