Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Insect Sci ; 3: 1279365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469510

RESUMO

Introduction: The potato psyllid Bactericera cockerelli is the insect vector of the fastidious bacterium 'Candidatus Liberibacter solanacearum'. The bacterium infects both B. cockerelli and plant species, causing zebra chip (ZC) disease of potato and vein-greening disease of tomato. Temperatures are known to influence the initiation and progression of disease symptom in the host plant, and seasonal transitions from moderate to high temperatures trigger psyllid dispersal migration to facilitate survival. Methods: 'Ca. L. solanacearum' -infected and uninfected psyllids were reared at previously established 'permissible', optimal, and 'non-permissible' and temperatures of 18°C, 24°C, and 30°C, respectively. Gene expression profiles for 'Ca. L. solanacearum'-infected and -uninfected adult psyllids reared at different temperatures were characterized by Illumina RNA-Seq analysis. Bacterial genome copy number was quantified by real-time quantitative-PCR (qPCR) amplification. Results: Relative gene expression profiles varied in psyllids reared at the three experimental temperatures. Psyllids reared at 18°C and 30°C exhibited greater fold-change increased expression of stress- and 'Ca. L. solanacearum' invasion-related proteins. Quantification by qPCR of bacterial genome copy number revealed that 'Ca. L. solanacearum' accumulation was significantly lower in psyllids reared at 18°C and 30°C, compared to 24°C. Discussion: Temperature is a key factor in the life history of potato psyllid and multiplication/accumulation of 'Ca. L. solanacearum' in both the plant and psyllid host, influences the expression of genes associated with thermal stress tolerance, among others, and may have been instrumental in driving the co-evolution of the pathosystem.

2.
Arch Virol ; 167(1): 177-182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705109

RESUMO

The potato/tomato psyllid Bactericera cockerelli (Hemiptera: Triozidae) is a pest of Solanaceae plants and a vector of the pathogenic bacterium 'Candidatus Liberibacter solanacearum', which is associated with zebra chip disease in potato. This disease is controlled through insecticide treatments, and more environmentally friendly management options are desirable. The objective of this study was to identify viruses present in potato psyllid populations that might be used as biocontrol agents for this insect pest. A new picorna-like virus, tentatively named "Bactericera cockerelli picorna-like virus" (BcPLV), was discovered in B. cockerelli populations maintained in greenhouses, through the use of high-throughput sequencing data and subsequent confirmation by RT-PCR and Sanger sequencing. BcPLV has a positive-sense 9,939-nt RNA genome encoding a single 2,947-aa polyprotein and is related to the Diaphorina citri picorna-like virus (DcPLV) found in Asian citrus psyllid Diaphorina citri populations. Based on their genome organization and the phylogeny of their RNA-dependent RNA polymerase domains, BcPLV and DcPLV together are proposed to comprise a new genus, provisionally named "Psylloidivirus", within the family Iflaviridae.


Assuntos
Hemípteros , Rhizobiaceae , Solanum lycopersicum , Solanum tuberosum , Vírus , Animais , Doenças das Plantas
3.
Environ Entomol ; 50(4): 919-928, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844012

RESUMO

Understanding host use by psyllids (Hemiptera: Psylloidea) benefits from comparative studies of behavior on host and nonhost plant species. While most psyllid species develop on one or a few closely related plant species, some species are generalized enough to develop on species across plant families. We used electropenetography (EPG) technology to compare probing activities of an oligophagous psyllid (Bactericera cockerelli (Sulc)) and a host-specialized psyllid (Bactericera maculipennis) on two species of Solanaceae (potato, Solanum tuberosum L. and matrimony vine, Lycium barbarum L.) and two species of Convolvulaceae (field bindweed, Convolvulus arvensis L. and sweet potato, Ipomoea batatas). Bactericera cockerelli develops on all four species, albeit with longer development times on Convolvulaceae. Bactericera maculipennis develops only on Convolvulaceae. Bactericera cockerelli fed readily from phloem of all four species, but the likelihood of entering phloem and duration of time in phloem was reduced on suboptimal hosts (Convolvulaceae) relative to behavior on Solanaceae. We observed instances of cycling between bouts of phloem salivation and ingestion in assays of optimal (Solanaceae) hosts not observed on Convolvulaceae. The Convolvulaceae-specialized B. maculipennis (Crawford) failed to feed from phloem of nonhosts (Solanaceae). Both psyllid species readily ingested from xylem of all plant species, irrespective of host status. Our finding that phloem feeding by B. maculipennis did not occur on potato has implications for understanding epidemiology of phloem-limited psyllid-vectored plant pathogens. Our results also showed that EPG assays detect subtle variation in probing activities that assist in understanding host use by psyllids.


Assuntos
Hemípteros , Solanum tuberosum , Animais , Doenças das Plantas
4.
Environ Entomol ; 49(4): 974-982, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32533139

RESUMO

Understanding factors that affect the population dynamics of insect pest species is key for developing integrated pest management strategies in agroecosystems. Most insect pest populations are strongly regulated by abiotic factors such as temperature and precipitation, and assessing relationships between abiotic conditions and pest dynamics can aid decision-making. However, many pests are also managed with insecticides, which can confound relationships between abiotic factors and pest dynamics. Here we used data from a regional monitoring network in the Pacific Northwest United States to explore effects of abiotic factors on populations of an intensively managed potato pest, the potato psyllid (Bactericera cockerelli Sulc), which can vector Candidatus Liberibacter psyllaurus, a bacterial pathogen of potatoes. We assessed effects of temperature on psyllid populations, and show psyllid population growth followed predictable patterns within each year, but there was considerable variation across years in psyllid abundance. Examination of seasonal weather patterns suggested that in 2017, when psyllid populations were less abundant by several orders of magnitude than other years, a particularly long and cold period of winter weather may have harmed overwintering populations and limited population growth. The rate of degree-day accumulation over time, as well as total degree-day accumulation also affected trap catch abundance, likely by mediating the number of psyllid generations per season. Our findings indicate that growers can reliably infer the potential magnitude of risk from potato psyllids using monitoring data, date of first detection, seasonal weather patterns, and population size early in the growing season.


Assuntos
Hemípteros , Solanum tuberosum , Animais , Noroeste dos Estados Unidos , Doenças das Plantas , Dinâmica Populacional , Estações do Ano
5.
Plant Dis ; 104(3): 688-693, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31940449

RESUMO

Zebra chip (ZC) disease of potato (Solanum tuberosum) is associated with infection by 'Candidatus Liberibacter solanacearum' (Lso). Two haplotypes of Lso-A and B-occur in the United States. Lso haplotype B is more virulent than haplotype A, causing greater disease incidence in tubers, more severe symptoms, and greater loss in tuber yield. This study assessed whether tubers from infected plants generate new infected plants the following year. The effects of both Lso haplotypes A and B on tuber resprout were examined on five potato cultivars. When compared with noninfected tubers, overall plant emergence rate from Lso A- or B-infected tubers was lower, plants emerged slower, and plants generated lower daughter tuber yields in weight and quantity. Plants generally emerged poorly from Lso B-infected tubers and produced lower daughter tuber yields than Lso A-infected tubers. Regardless of Lso treatment, all daughter tubers were asymptomatic, and only 0.3% tested positive for Lso in experiments conducted over 2 years. This suggests that plants generated from Lso A- and Lso B-infected seed potatoes with severe ZC symptoms are likely not a significant source of Lso in potato fields.


Assuntos
Rhizobiaceae , Solanum tuberosum , Haplótipos , Doenças das Plantas , Sementes
6.
Environ Entomol ; 46(2): 210-216, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108600

RESUMO

The psyllid Bactericera maculipennis (Crawford) (Hemiptera: Triozidae) often cohabits field bindweed (Convolvulus arvensis, Solanales: Convolvulaceae) and other plants with the congeneric psyllid, Bactericera cockerelli (Sulc), in the Pacific Northwestern United States. Bactericera cockerelli is a vector of "Candidatus Liberibacter solanacearum," the pathogen associated with zebra chip disease of potato (Solanales: Solanaceae). Because B. maculipennis and B. cockerelli both naturally occur on certain plants, we surveyed B. maculipennis adults collected from Washington and Idaho for presence of "Ca. L. solanacearum" to determine whether this psyllid also harbors this pathogen. Liberibacter was present in 30% of field-collected B. maculipennis and in 100% of colony-reared psyllids. Sequences of 16S rDNA and microsatellite markers revealed that "Ca. L. solanacearum" from B. maculipennis was closely related to Liberibacter haplotype B from B. cockerelli. Results of laboratory assays demonstrated that Liberibacter can be transmitted between B. cockerelli and B. maculipennis on plants within the Convolvulaceae. Potato plants challenged with Liberibacter-infected B. maculipennis did not become infected, apparently because potato is not a suitable host for the psyllid. We therefore conclude that B. maculipennis is not a direct threat to potato production, despite its association with Liberibacter. We are the first to report that "Ca. L. solanacearum" is associated with a psyllid other than B. cockerelli in North America. Results of our study demonstrate the importance of understanding the complete ecology of psyllids-including interactions with other psyllids on non-crop hosts-in predicting what crops or regions are potentially susceptible to the spread of Liberibacter.


Assuntos
Hemípteros/microbiologia , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Rhizobiaceae/classificação , Rhizobiaceae/genética , Animais , DNA Bacteriano/genética , Haplótipos , Idaho , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Especificidade da Espécie , Washington
7.
PLoS One ; 11(8): e0161016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525703

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited bacterium that severely affects important Solanaceae and Apiaceae crops, including potato, tomato, pepper, tobacco, carrot and celery. This bacterium is transmitted to solanaceous species by potato psyllid, Bactericera cockerelli, and to Apiaceae by carrot psyllids, including Trioza apicalis and Bactericera trigonica. Five haplotypes of Lso have so far been described, two are associated with solanaceous species and potato psyllids, whereas the other three are associated with carrot and celery crops and carrot psyllids. Little is known about cross-transmission of Lso to carrot by potato psyllids or to potato by carrot psyllids. Thus, the present study assessed whether potato psyllid can transmit Lso to carrot and whether Lso haplotypes infecting solanaceous species can also infect carrot and lead to disease symptom development. In addition, the stylet probing behavior of potato psyllid on carrot was assessed using electropenetrography (EPG) technology to further elucidate potential Lso transmission to Apiaceae by this potato insect pest. Results showed that, while potato psyllids survived on carrot for several weeks when confined on the plants under controlled laboratory and field conditions, the insects generally failed to infect carrot plants with Lso. Only three of the 200 carrot plants assayed became infected with Lso and developed characteristic disease symptoms. Lso infection in the symptomatic carrot plants was confirmed by polymerase chain reaction assay and Lso in the carrots was determined to be of the haplotype B, which is associated with solanaceous species. EPG results further revealed that potato psyllids readily feed on carrot xylem but rarely probe into the phloem tissue, explaining why little to no Lso infection occurred during the controlled laboratory and field cage transmission trials. Results of our laboratory and field transmission studies, combined with our EPG results, suggest that the risk of Lso infection and spread between psyllid-infested solanaceous and Apiaceae crops is likely to be negligible under normal field conditions.


Assuntos
Daucus carota/microbiologia , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Animais , Comportamento Animal , Laboratórios , Funções Verossimilhança , Solanum tuberosum/microbiologia
8.
PLoS One ; 10(11): e0142734, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555359

RESUMO

"Candidatus Liberibacter solanacearum" (Proteobacteria) is an important pathogen of solanaceous crops (Solanales: Solanaceae) in North America and New Zealand, and is the putative causal agent of zebra chip disease of potato. This phloem-limited pathogen is transmitted to potato and other solanaceous plants by the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). While some plants in the Convolvulaceae (Solanales) are also known hosts for B. cockerelli, previous efforts to detect Liberibacter in Convolvulaceae have been unsuccessful. Moreover, studies to determine whether Liberibacter can be acquired from these plants by B. cockerelli are lacking. The goal of this study was to determine whether horizontal transmission of Liberibacter occurs among potato psyllids on two species of Convolvulaceae, sweet potato (Ipomoea batatas) and field bindweed (Convolvulus arvensis), which grows abundantly in potato growing regions of the United States. Results indicated that uninfected psyllids acquired Liberibacter from both I. batatas and C. arvensis if infected psyllids were present on plants concurrently with the uninfected psyllids. Uninfected psyllids did not acquire Liberibacter from plants if the infected psyllids were removed from the plants before the uninfected psyllids were allowed access. In contrast with previous reports, PCR did detect the presence of Liberibacter DNA in some plants. However, visible amplicons were faint and did not correspond with acquisition of the pathogen by uninfected psyllids. None of the plants exhibited disease symptoms. Results indicate that horizontal transmission of Liberibacter among potato psyllids can occur on Convolvulaceae, and that the association between Liberibacter and Convolvulaceae merits additional attention.


Assuntos
Hemípteros/fisiologia , Proteobactérias/patogenicidade , Solanaceae/microbiologia , Animais , Genes Bacterianos , Proteobactérias/genética
9.
PLoS One ; 10(9): e0138946, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407093

RESUMO

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato ("inoculation access period", or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring questions of vector efficiency.


Assuntos
Eletrofisiologia/métodos , Haplótipos , Hemípteros/genética , Proteobactérias/patogenicidade , Solanum tuberosum/microbiologia , Animais , Campos Eletromagnéticos , Comportamento Alimentar , Hemípteros/microbiologia , Hemípteros/fisiologia
10.
Plant Dis ; 99(7): 910-915, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30690968

RESUMO

Zebra chip disease of potato is caused by the bacterial pathogen 'Candidatus Liberibacter solanacearum' and is a growing concern for commercial potato production in several countries in North and Central America and New Zealand. 'Ca. L. solanacearum' is vectored by the potato psyllid Bactericera cockerelli, which transmits the pathogen to several cultivated and wild solanaceaous host plants. Silverleaf nightshade (SLN), Solanum elaeagnifolium, is a common weed in the Lower Rio Grande Valley of Texas and a host for both the potato psyllid and 'Ca. L. solanacearum'. SLN plants were successfully inoculated with 'Ca. L. solanacearum' under laboratory conditions. Retention studies demonstrated that 'Ca. L. solanacearum'-infected SLN planted in the field in January 2013, concurrent with commercial potato planting, retained the pathogen under field conditions throughout the year despite extensive dieback during summer. The presence of 'Ca. L. solanacearum' was confirmed in leaves, roots, and stolons of SLN plants collected the following year using polymerase chain reaction. Acquisition assays using B. cockerelli adults also revealed that SLN retained the pathogen. Transmission studies determined that B. cockerelli can acquire 'Ca. L. solanacearum' within a 2-week acquisition access period on 'Ca. L. solanacearum'-infected SLN and subsequently transmit the pathogen to potato. These results demonstrate that SLN plants can serve as a reservoir for 'Ca. L. solanacearum', providing a source of inoculum for B. cockerelli adults colonizing potato the next season. The presence of SLN plants all year round in the LRGV makes the weed an epidemiologically important host. These findings underscore the importance of eradicating or managing SLN plants growing in the vicinity of potato fields to prevent spread of 'Ca. L. solanacearum' and damage caused by zebra chip.

11.
Plant Biotechnol J ; 13(4): 551-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25421386

RESUMO

Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux.


Assuntos
Ácido Clorogênico/metabolismo , Inativação Gênica , Fenilpropionatos/metabolismo , Solanum tuberosum/metabolismo , Genes de Plantas , Filogenia , Plantas Geneticamente Modificadas , Solanum tuberosum/genética
12.
PLoS One ; 9(3): e93475, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24682175

RESUMO

"Candidatus Liberibacter solanacearum" (Lso) is an economically important pathogen of solanaceous crops and the putative causal agent of zebra chip disease of potato (Solanum tuberosum L.). This pathogen is transmitted to solanaceous species by the potato psyllid, Bactericera cockerelli (Sulc), but many aspects of the acquisition and transmission processes have yet to be elucidated. The present study was conducted to assess the interacting effects of acquisition access period, incubation period, and host plant on Lso titer in psyllids, the movement of Lso from the alimentary canal to the salivary glands of the insect, and the ability of psyllids to transmit Lso to non-infected host plants. Following initial pathogen acquisition, the probability of Lso presence in the alimentary canal remained constant from 0 to 3 weeks, but the probability of Lso being present in the salivary glands increased with increasing incubation period. Lso copy numbers in psyllids peaked two weeks after the initial pathogen acquisition and psyllids were capable of transmitting Lso to non-infected host plants only after a two-week incubation period. Psyllid infectivity was associated with colonization of insect salivary glands by Lso and with Lso copy numbers >10,000 per psyllid. Results of our study indicate that Lso requires a two-week latent period in potato psyllids and suggest that acquisition and transmission of Lso by psyllids follows a pattern consistent with a propagative, circulative, and persistent mode of transmission.


Assuntos
Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Animais , Insetos Vetores , Glândulas Salivares/microbiologia
13.
Environ Entomol ; 43(2): 344-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517908

RESUMO

The potato psyllid (Bactericera cockerelli Sulc) is an economically important insect pest of solanaceous crops such as potato, tomato, pepper, and tobacco. Historically, the potato psyllid's range included central United States, Mexico, and California; more recently, populations of this insect have been reported in Central America, the Pacific Northwest, and New Zealand. Like most phytophagous insects, potato psyllids require symbiotic bacteria to compensate for nutritional deficiencies in their diet. Potato psyllids harbor the primary symbiont, Candidatus Carsonella ruddii, and may also harbor many secondary symbionts such as Wolbachia sp., Sodalis sp., Pseudomonas sp., and others. These secondary symbionts can have an effect on reproduction, nutrition, immune response, and resistances to heat or pesticides. To identify regional differences in potato psyllid bacterial symbionts, 454 pyrosequencing was performed using generic 16S rRNA gene primers. Analysis was performed using the Qiime 1.6.0 software suite, ARB Silva, and R. Operational taxonomic units were then grouped at 97% identity. Representative sequences were classified to genus using the ARB SILVA database. Potato psyllids collected in California contained a less diverse microbial community than those collected in the central United States and Central America. The crop variety, collection year, and haplotype did not seem to affect the microbial community in potato psyllids. The primary difference between psyllids in different regions was the presence and overall bacterial community composition of Candidatus Carsonella ruddii and Wolbachia.


Assuntos
Distribuição Animal/fisiologia , Biota , Hemípteros/microbiologia , Simbiose , Animais , Sequência de Bases , Haplótipos , Hemípteros/genética , Dados de Sequência Molecular , Nova Zelândia , Nicarágua , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos
14.
J Econ Entomol ; 106(5): 1964-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24224236

RESUMO

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a serious pest of potato and other solanaceous crops. B. cockerelli has been associated with the bacterium "Candidatus Liberibacter solanacearum" (Lso), the causal agent of zebra chip, a new and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. The biology of liberibacter transmission to potato and other host plants by the potato psyllid is largely unknown. The current study determined Lso acquisition by adult psyllids following different acquisition access periods (AAP) on potato and tomato, quantified Lso titer over time in postacquisition psyllids, determined Lso-acquisition rate in psyllids at each AAP on each source of inoculum, and determined influence of host plant Lso titer on Lso acquisition rates and postacquisition titer in psyllids over time. Results showed that Lso detection rates and titer increased over time in psyllids following AAPs of 8, 24, and 72 h on tomato and potato and Lso titer was highest when psyllids acquired Lso from tomato versus potato. Lso titer ranged from 200- to 400-fold higher in tomato leaves, petioles, and stems than those of potato. The increase of Lso titer in the insects reached a plateau after an average of 15 d following 24 and 72 h AAP on potato or tomato. At this 15-d plateau, Lso titer in postacquisition psyllids was comparable with that of infective psyllids from the Lso-infected laboratory colony. Lso-acquisition rate in psyllids fed on potato and tomato increased up to 5 and 20, 15 and 35, 35 and 75, and 80 and 100%, respectively, when the insects were allowed access to plants for 4, 8, 24, and 72 h, respectively.


Assuntos
Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Solanum lycopersicum/microbiologia , Solanum tuberosum/microbiologia , Animais , Ninfa/microbiologia , Folhas de Planta/microbiologia , Fatores de Tempo
15.
Environ Entomol ; 42(2): 381-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23575030

RESUMO

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), is an economically important pest of potato (Solanum tuberosum L.) crops across the western and central United States, as it is known to cause psyllid yellows disease and to transmit the bacterium that causes zebra chip disease. Recent genotyping of B. cockerelli collected during the 2011 potato growing season identified three psyllid haplotypes within the western and central United States according to their geographical regions: northwestern, western, and central. To understand potato psyllid population dynamics before the year 2011, high resolution melting analysis of the B. cockerelli mitochondrial cytochrome oxidase I-like gene was used to identify the haplotypes of over 450 archived psyllids collected in the western and central United States between the years 1998 and 2010. Results show that the northwestern haplotype was present in Washington State as early as 1998 and has persisted in this region since that time. Likewise, psyllids of the western haplotype have also been present in Washington and Oregon before 2011.


Assuntos
Haplótipos , Hemípteros/genética , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Genotipagem , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Estações do Ano , Fatores de Tempo , Estados Unidos
16.
PLoS One ; 7(11): e49330, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166641

RESUMO

Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.


Assuntos
Hemípteros/crescimento & desenvolvimento , Hemípteros/microbiologia , Herbivoria/fisiologia , Rhizobiaceae , Solanum tuberosum/parasitologia , Simbiose , Análise de Variância , Animais , Modelos Lineares , Oviposição/fisiologia , Dinâmica Populacional , Reprodução/fisiologia , Solanum tuberosum/química , Compostos Orgânicos Voláteis/análise
17.
Plant Dis ; 96(1): 18-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30731847

RESUMO

Temperature has been shown to have a significant effect on development of liberibacter species associated with citrus Huanglongbing disease. 'Candidatus Liberibacter africanus' and 'Ca. L. americanus' are both heat sensitive, whereas 'Ca. L. asiaticus' is heat tolerant. The recently described 'Ca. L. solanacearum' is associated with zebra chip (ZC), a newly emerging and economically important disease of potato worldwide. This psyllid-transmitted liberibacter species severely affects several other solanaceous crops and carrot. Experiments were conducted to evaluate effects of temperature on development of 'Ca. L. solanacearum' and ZC disease. Potato plants were inoculated with 'Ca. L. solanacearum' by briefly exposing them to liberibacter-infective potato psyllids at various temperatures under laboratory conditions. Following insect exposure, the plants were maintained at selected temperature regimes in growth chambers, monitored for ZC symptom development, and later tested for liberibacter by polymerase chain reaction to confirm infection. Results indicated that temperatures below 17°C appear to slow development of 'Ca. L. solanacearum' and ZC symptoms, whereas temperatures above 32°C are detrimental to this liberibacter. Compared to Huanglongbing liberibacters, 'Ca. L. solanacearum' appears heat sensitive. The sensitivity of this bacterium and its insect vector to temperature may partially explain incidence, severity, and distribution of ZC in affected regions.

18.
J Econ Entomol ; 104(5): 1486-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22066176

RESUMO

Successful transmission of plant pathogens by insects depends on the vector inoculation efficiency and how rapidly the insect can effectively transmit the pathogen to the host plant. The potato psyllid, Bactericera cockerelli (Sulc), has recently been found to transmit "Candidatus Liberibacter solanacearum," a bacterium associated with zebra chip (ZC), an emerging and economically important disease of potato in several parts of the world. Currently, little is known about the epidemiology of ZC and its vector's inoculation capabilities. Studies were conducted in the field and laboratory to 1) assess transmission efficiency of potato psyllid nymphs and adults; 2) determine whether psyllid inoculation access period affects ZC incidence, severity, and potato yield; and 3) determine how fast the psyllid can transmit liberibacter to potato, leading to ZC development. Results showed that adult potato psyllids were highly efficient vectors of liberibacter that causes ZC and that nymphs were less efficient than adults at transmitting this bacterium. It was also determined that inoculation access period had little influence on overall ZC disease incidence, severity, and resulting yield loss. Moreover, results showed that exposure of a plant to 20 adult potato psyllids for a period as short as 1 h resulted in ZC symptom development. Furthermore, it was shown that a single adult potato psyllid was capable of inoculating liberibacter to potato within a period as short as 6 h, thereby inducing development of ZC. This information will help in developing effective management strategies for this serious potato disease.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Animais , Hemípteros/fisiologia , Insetos Vetores/fisiologia , Ninfa/microbiologia , Ninfa/fisiologia , Rhizobiaceae/fisiologia , Washington
19.
Pest Manag Sci ; 67(7): 815-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21337676

RESUMO

BACKGROUND: The potato psyllid, Bactericera cockerelli, is a vector of Candidatus Liberibacter solanacearum, causing several diseases in solanaceous crops. Laboratory and field no-choice and choice experiments were conducted to evaluate the repellency of kaolin particle film on adults of B. cockerelli on tomato plants that had been sprayed with kaolin particle film on the upper surface only, on the lower surface only and on both leaf surfaces. RESULTS: In no-choice tests in the laboratory, the numbers of adults on leaves were not different between the kaolin particle film and the water control, regardless of which leaf surface(s) were treated, but numbers of eggs were lower on the leaves treated with kaolin particle film than on those treated with water. In choice tests on plants treated with water/plants treated with kaolin particle film at ratios of 1:1, 6:3 or 8:1, fewer adults and eggs were found on the leaves treated with kaolin particle film than on leaves treated with water. Under field conditions, in caged no-choice or choice tests, fewer adults, eggs and nymphs were found on plants treated with kaolin particle film than on plants treated with water. In an uncaged test under field conditions, plants sprayed with kaolin particle film had fewer psyllids than those sprayed with water. CONCLUSION: Even though potato psyllid adults could land on plants treated with kaolin particle film when no choice was given, fewer eggs were laid. When given a choice, the psyllids avoided plants treated with kaolin particle film under laboratory and field conditions. Kaolin particle film treatment may be a useful alternative for management of potato psyllids under field conditions.


Assuntos
Hemípteros/efeitos dos fármacos , Controle de Insetos/métodos , Repelentes de Insetos/farmacologia , Caulim/farmacologia , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Animais , Hemípteros/fisiologia , Controle de Insetos/instrumentação
20.
J Econ Entomol ; 104(6): 1783-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22299337

RESUMO

In plant pathosystems involving insect vectors, disease spread, incidence, and severity often depend on the density of the vector population and its rate of infectivity with the disease pathogen. The potato psyllid, Bactericera cockerelli (Sulc), has recently been associated with zebra chip (ZC), an emerging and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. "Candidatus Liberibacter solanacearum," a previously undescribed species of liberibacter has been linked to the disease and is transmitted to potato by B. cockerelli. Experiments were conducted under laboratory and field conditions to determine the impact of B. cockerelli density on ZC incidence, potato yield, and tuber processing quality. Insect densities ranging from one to 25 liberibacter-infective psyllids per plant were used during the experiments. Results showed that a single adult potato psyllid was capable of inoculating liberibacter to potato and causing ZC disease after a 72-h inoculation access period and was as damaging as 25 psyllids per plant. In addition, ZC-diseased plants showed a sharp reduction in tuber yield but the disease response was independent of the density of psyllids. Furthermore, both glucose and sucrose were found to have highly elevated concentrations in ZC-diseased potato tubers compared with noninfected ones and psyllid density did not vary the response. The high reducing sugar concentrations found in ZC-infected potato tubers are believed to be responsible for browning and reduced quality in processed ZC-infected tubers. This information could help ZC-affected potato producers in making effective management decisions for this serious disease.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Animais , Hemípteros/fisiologia , Incidência , Insetos Vetores/fisiologia , Tubérculos/crescimento & desenvolvimento , Tubérculos/microbiologia , Tubérculos/fisiologia , Densidade Demográfica , Rhizobiaceae/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...