Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(5-1): 054202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907462

RESUMO

Cyclops states are intriguing cluster patterns observed in oscillator networks, including neuronal ensembles. The concept of cyclops states formed by two distinct, coherent clusters and a solitary oscillator was introduced by Munyaev et al. [Phys. Rev. Lett. 130, 107201 (2023)0031-900710.1103/PhysRevLett.130.107201], where we explored the surprising prevalence of such states in repulsive Kuramoto networks of rotators with higher-mode harmonics in the coupling. This paper extends our analysis to understand the mechanisms responsible for destroying the cyclops' states and inducing dynamical patterns called breathing and switching cyclops states. We first analytically study the existence and stability of cyclops states in the Kuramoto-Sakaguchi networks of two-dimensional oscillators with inertia as a function of the second coupling harmonic. We then describe two bifurcation scenarios that give birth to breathing and switching cyclops states. We demonstrate that these states and their hybrids are prevalent across a wide coupling range and are robust against a relatively large intrinsic frequency detuning. Beyond the Kuramoto networks, breathing and switching cyclops states promise to strongly manifest in other physical and biological networks, including coupled theta neurons.

2.
Phys Rev Lett ; 130(10): 107201, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962033

RESUMO

Repulsive oscillator networks can exhibit multiple cooperative rhythms, including chimera and cluster splay states. Yet, understanding which rhythm prevails remains challenging. Here, we address this fundamental question in the context of Kuramoto-Sakaguchi networks of rotators with higher-order Fourier modes in the coupling. Through analysis and numerics, we show that three-cluster splay states with two distinct coherent clusters and a solitary oscillator are the prevalent rhythms in networks with an odd number of units. We denote such tripod patterns cyclops states with the solitary oscillator reminiscent of the Cyclops' eye. As their mythological counterparts, the cyclops states are giants that dominate the system's phase space in weakly repulsive networks with first-order coupling. Astonishingly, the addition of the second or third harmonics to the Kuramoto coupling function makes the cyclops states global attractors practically across the full range of coupling's repulsion. Beyond the Kuramoto oscillators, we show that this effect is robustly present in networks of canonical theta neurons with adaptive coupling. At a more general level, our results suggest clues for finding dominant rhythms in repulsive physical and biological networks.

3.
Phys Rev E ; 105(2-1): 024203, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291064

RESUMO

Solitary states emerge in oscillator networks when one oscillator separates from the fully synchronized cluster and oscillates with a different frequency. Such chimera-type patterns with an incoherent state formed by a single oscillator were observed in various oscillator networks; however, there is still a lack of understanding of how such states can stably appear. Here, we study the stability of solitary states in Kuramoto networks of identical two-dimensional phase oscillators with inertia and a phase-lagged coupling. The presence of inertia can induce rotatory dynamics of the phase difference between the solitary oscillator and the coherent cluster. We derive asymptotic stability conditions for such a solitary state as a function of inertia, network size, and phase lag that may yield either attractive or repulsive coupling. Counterintuitively, our analysis demonstrates that (1) increasing the size of the coherent cluster can promote the stability of the solitary state in the attractive coupling case and (2) the solitary state can be stable in small-size networks with all repulsive coupling. We also discuss the implications of our stability analysis for the emergence of rotatory chimeras.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...