Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 105(5): 1259-1271, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33289406

RESUMO

Maize lethal necrosis (MLN) disease appeared in Kenya in 2011, causing major damage. In a first survey of 121 communities in 2013, participants estimated the proportion of households affected and the yield loss in affected areas; from this survey, the overall loss was estimated at 22%, concentrated in western Kenya (94%). Efforts to combat the disease included planting resistant varieties, creating awareness of MLN management, and producing pathogen-free seed. In 2018, the same communities were revisited and asked the same questions, establishing a panel community survey. The results showed that incidents of MLN had greatly decreased, and the number of communities that had observed it had reduced from 76% in 2013 to 26% by the long rains of 2018; while still common in western Kenya (60%), MLN had greatly reduced elsewhere (to 10%). In 2013, 40% of farmers were affected, yield loss among affected farmers was estimated at 44%, and total yield loss was estimated at 22% (a production loss of 0.5 million metric tons/year), valued at US$187 million. By the long rains of 2018, 23% of farmers were affected, with a loss among affected farmers of 36%; overall annual loss was estimated at 8.5% or 0.37 million metric tons, valued at US$109 million, concentrated in western Kenya (79%). Of the recommended control measures, only the removal of diseased plants was commonly used (by 62% of affected communities), but not the use of agronomic practices (11%) or resistant varieties (9.5%). The reasons for the reduction in MLN are not well understood; external factors such as spraying insecticide against fall armyworm and unfavorable weather likely played a role, as did using disease-free seed, but not the use of resistant varieties or appropriate management practices. Still, as the pathogen remains in the fields, it is important to keep disseminating these control methods, particularly resistant varieties.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Sementes , Zea mays , Quênia , Necrose , Inquéritos e Questionários
2.
Agric Ecosyst Environ ; 292: 106804, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32308246

RESUMO

Fall armyworm (FAW), one of the most important pests of maize in Latin America, suddenly appeared in Africa in 2016 and spread rapidly. Estimates of crop losses due to FAW are essential in order to compare the impact of these losses with the cost of controlling FAW and advise appropriate technology dissemination and policy. In this study, therefore, crop losses due to FAW in 2017 and 2018 were estimated in all the maize production areas of Kenya. Data were collected during June and July 2018 through 121 group discussions with 1439 farmers, separately with men (697) and women (742), in communities that were randomly selected to represent the major maize growing areas. The results showed that most participants (82%) could correctly identify the FAW from pictures. By 2016, FAW was observed by more than half of the communities (53%), with most of the other half first observing FAW in 2017. The proportion of farmers affected by FAW substantially increased, from the long rains of 2017 (63%) to the long rains of 2018 (83%), and in all zones except for the high tropics and moist mid-altitudes. However, the percentage of loss experienced by affected farmers decreased slightly, from 54% in 2017 to 42% in 2018. In 2017, the low- and medium-potential maize-production areas were the most affected, with losses of >50%, with high-potential areas facing losses of about 30%, resulting in a total loss of 37% for the whole country. In the main 2018 season, losses in the low- and medium-potential areas were less - about 20%, but the high-potential areas were now more affected, leading to a total estimate of 33%. We conclude that FAW has suddenly become a major pest in Kenya, causing losses of about a third of the annual maize production, estimated at about 1 million tonnes.

3.
Field Crops Res ; 246: 107693, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32015590

RESUMO

The development and deployment of high-yielding stress tolerant maize hybrids are important components of the efforts to increase maize productivity in eastern Africa. This study was conducted to: i) evaluate selected, stress-tolerant maize hybrids under farmers' conditions; ii) identify farmers' selection criteria in selecting maize hybrids; and iii) have farmers evaluate the new varieties according to those criteria. Two sets of trials, one with 12 early-to-intermediate maturing and the other with 13 intermediate-to-late maturing hybrids, improved for tolerance to multiple stresses common in farmers' fields in eastern Africa (drought, northern corn leaf blight, gray leaf spot, common rust, maize streak virus), were evaluated on-farm under smallholder farmers' conditions in a total of 42 and 40 environments (site-year-management combinations), respectively, across Kenya, Uganda, Tanzania and Rwanda in 2016 and 2017. Farmer-participatory variety evaluation was conducted at 27 sites in Kenya and Rwanda, with a total of 2025 participating farmers. Differential performance of the hybrids was observed under low-yielding (<3 t ha-1) and high-yielding (>3 t ha-1) environments. The new stress-tolerant maize hybrids had a much better grain-yield performance than the best commercial checks under smallholder farmer growing environments but had a comparable grain-yield performance under optimal conditions. These hybrids also showed better grain-yield stability across the testing environments, providing an evidence for the success of the maize-breeding approach. In addition, the new stress- tolerant varieties outperformed the internal genetic checks, indicating genetic gain under farmers' conditions. Farmers gave high importance to grain yield in both farmer-stated preferences (through scores) and farmer-revealed preferences of criteria (revealed by regressing the overall scores on the scores for the individual criteria). The top-yielding hybrids in both maturity groups also received the farmers' highest overall scores. Farmers ranked yield, early maturity, cob size and number of cobs as the most important traits for variety preference. The criteria for the different hybrids did not differ between men and women farmers. Farmers gave priority to many different traits in addition to grain yield, but this may not be applicable across all maize-growing regions. Farmer-stated importance of the different criteria, however, were quite different from farmer- revealed importance. Further, there were significant differences between men and women in the revealed-importance of the criteria. We conclude that incorporating farmers' selection criteria in the stage-gate advancement process of new hybrids by the breeders is useful under the changing maize-growing environments in sub-Saharan Africa, and recommended to increase the turnover of new maize hybrids.

4.
Food Policy ; 66: 50-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148997

RESUMO

We analyse the impact of improved chickpea adoption on welfare in Ethiopia using three rounds of panel data. First, we estimate the determinants of improved chickpea adoption using a double hurdle model. We apply a control function approach with correlated random effects to control for possible endogeneity resulting from access to improved seed and technology transfer activities. To instrument for these variables we develop novel distance weighted measures of a household's neighbours' access to improved seed and technology transfer activities. Second, we estimate the impact of area under improved chickpea cultivation on household income and poverty. We apply a fixed effects instrumental variables approach where we use the predicted area under cultivation from the double hurdle model as an instrument for observed area under cultivation. We find that improved chickpea adoption significantly increases household income while also reducing household poverty. Finally, we disaggregate results by landholding to explore whether the impact of adoption has heterogeneous effects. Adoption favoured all but the largest landholders, for who the new technology did not have a significant impact on income. Overall, increasing access to improved chickpea appears a promising pathway for rural development in Ethiopia's chickpea growing regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...