Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 86(4)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821858

RESUMO

We present an experimental and theoretical study which compares the phonon anomalies and the electronic gap features in the infrared response of the weakly coupled two-leg-ladders in Sr14-xCaxCu24O41(SCCO) with those of the underdoped high-Tcsuperconductor YBa2Cu3O6+x(YBCO) and thereby reveals some surprising analogies. Specifically, we present a phenomenological model that describes the anomalous doping- and temperature-dependence of some of the phonon features in thea-axis response (field along the rungs of the ladders) of SCCO. It assumes that the phonons are coupled to charge oscillations within the ladders. Their changes with decreasing temperature reveal the formation of a crystal (density wave) of hole pairs that are oriented along the rungs. We also discuss the analogy to a similar model that was previously used to explain the phonon anomalies and an electronic plasma mode in thec-axis response (field perpendicular to the CuO2planes) of YBCO. We further confirm that an insulator-like pseudogap develops in thea-axis conductivity of SCCO which closely resembles that in thec-axis conductivity of YBCO. Most surprisingly, we find that thec-axis conductivity (field along the legs of the ladders) of SCCO is strikingly similar to the in-plane one (field parallel to the CuO2planes) of YBCO. Notably, in both cases a dip feature develops in the normal state spectra that is connected with a spectral weight shift toward low frequencies and can thus be associated with precursor superconducting pairing correlations that are lacking macroscopic phase coherence. This SCCO-YBCO analogy indicates that collective degrees of freedom contribute to the low-energy response of underdoped highTccuprates and it even suggests that the charges in the CuO2planes tend to segregate forming quasi-one-dimensional structures similar to the two-leg ladders, as predicted for the stripe-scenario or certain intertwinned states.

2.
J Phys Condens Matter ; 31(13): 135502, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30625439

RESUMO

Motivated by similarities between cuprate superconductors and two-leg ladder copper-oxide compounds and in order to obtain a better understanding of optical properties of cuprate superconductors we have studied the c-axis (along the ladder) optical conductivity [Formula: see text] of a doped [Formula: see text] two-leg ladder. Using exact diagonalization, we have calculated the conductivity and related quantities for cyclic ladders of up to 13 rungs. In agreement with results of an early study by Hayward and coworkers (Hayward et al 1996 Phys. Rev. B 53 8863) we find that [Formula: see text] consists of a Drude peak at zero frequency and an absorption band in the infrared region that is separated from the former by a pseudogap. The width of the pseudogap [Formula: see text] increases with increasing J/t, in parallel with an increase of the magnitude [Formula: see text] of the gap in the quasiparticle excitation spectra. Our central finding is that [Formula: see text], where [Formula: see text] is the magnitude of the gap in the spin excitation spectra. We demonstrate that this approximate relation can be understood in terms of a phenomenological model involving a superconducting ladder and a coupling between charged quasiparticles and spin excitations. The relation is remarkably similar to the one between experimental values of the energy scale of a dip in the in-plane optical conductivity, the superconducting gap [Formula: see text] and the energy of the spin-resonance in cuprate superconductors (for a recent discussion of the optical data, see Sopík et al 2015 New J. Phys. 17 053022). Our findings support the point of view that low energy infrared active excited states of cuprate superconductors can be viewed as consisting of two charged quasiparticles connected with pair-breaking and a spin excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...