Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985972

RESUMO

The bacterial chemotaxis system is one of the best-understood cellular pathways and serves as the model for signal transduction systems. Most chemotaxis research has been conducted with transmembrane chemotaxis systems from Escherichia coli and has established paradigms of the system that were thought to be universal. However, emerging research has revealed that many bacteria possess alternative features of their chemotaxis system, demonstrating that these systems are likely more complex than previously assumed. Here, we compare the canonical chemotaxis system of E. coli with systems that diverge in supramolecular architecture, sensory mechanisms, and protein composition. The alternative features have likely evolved to accommodate chemical specificities of natural niches and cell morphologies. Collectively, these studies demonstrate that bacterial chemotaxis systems are a rapidly expanding field that offers many new opportunities to explore this exceedingly diverse system.

2.
mBio ; 14(5): e0159823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37607060

RESUMO

IMPORTANCE: A new class of bacterial protein sensors monitors intracellular levels of S-adenosylmethionine to modulate cell morphology, chemotaxis, and biofilm formation. Simultaneous regulation of these behaviors enables bacterial pathogens to survive within their niche. This sensor, exemplified by Treponema denticola CheWS, is anchored to the chemotaxis array and its sensor domain is located below the chemotaxis rings. This position may allow the sensor to directly interact with the chemotaxis histidine kinase CheA. Collectively, these data establish a critical role of CheWS in pathogenesis and further illustrate the impact of studying non-canonical chemotaxis proteins.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli , Quimiotaxia/fisiologia , Spirochaetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Bactérias/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil
3.
Trends Microbiol ; 29(6): 542-550, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33160853

RESUMO

Motility allows many microbes to traverse their environment to find nutrient sources or escape unfavorable environments. However, some microbes are nonmotile and are restricted to their immediate conditions. Intriguingly, sporadic reports have demonstrated that many nonmotile microbes can utilize the motility machinery of other microbes in their vicinity. This form of transportation, called hitchhiking, has been observed with both prokaryotic and eukaryotic microbes. Importantly, many hitchhiking microbes are pathogenic to humans or plants. Here, we discuss reports of intermicrobial hitchhiking to generate a comprehensive view of hitchhiking mechanisms and how such interactions may influence human and plant health. We hypothesize that microbial hitchhiking is ubiquitous in nature and may become the subject of an independent subfield of research in microbiology.


Assuntos
Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Humanos , Movimento , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...