Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 126(Pt 17): 3972-81, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813957

RESUMO

Rheb GTPase and the Tsc1-Tsc2 protein complex, which serves as a GTPase-activating protein for Rheb, have crucial roles in the regulation of cell growth in response to extracellular conditions. In Schizosaccharomyces pombe, Rheb and Tsc1-Tsc2 regulate cell cycle progression, the onset of meiosis and the uptake of amino acids. In cells lacking Tsc2 (Δtsc2), the amino acid transporter Aat1, which is normally expressed on the plasma membrane under starvation conditions, is confined to the Golgi. Here, we show that the loss of either pub1(+), encoding an E3 ubiquitin ligase, or any1(+), encoding a ß-arrestin-like protein, allows constitutive expression of Aat1 on the plasma membrane in Δtsc2 cells, suggesting that Pub1 and Any1 are required for localization of Aat1 to the Golgi. Subsequent analysis revealed that, in the Golgi, Pub1 and Any1 form a complex that ubiquitylates Aat1. Physical interaction of Pub1 and Any1 is more stable in Δtsc2 cells than in wild-type cells and is independent of Tor2 activity. These results indicate that the TSC-Rheb signaling pathway regulates the localization of amino acid transporters via Pub1 and Any1 in a Tor2-independent manner. Our study demonstrates that, unlike in budding yeast (in which Rsp5 and ARTs, a pair of proteins analogous to Pub1 and Any1, respectively, primarily act to reduce expression of the transporters on plasma membrane when nutrients are abundant), the primary role of fission yeast Pub1 and Any1 is to store the transporter in the Golgi under nutrient-rich conditions.


Assuntos
Arrestinas/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arrestinas/deficiência , Arrestinas/genética , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/genética , Ciclo Celular , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Meiose , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , beta-Arrestinas
2.
Genes Dev ; 27(1): 87-97, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307869

RESUMO

Members of the insulin peptide family have conserved roles in the regulation of growth and metabolism in a wide variety of metazoans. Drosophila insulin-like peptides (Dilps) promote tissue growth through the single insulin-like receptor (InR). Despite the important role of Dilps in nutrient-dependent growth control, the molecular mechanism that regulates the activity of circulating Dilps is not well understood. Here, we report the function of a novel secreted decoy of InR (SDR) as a negative regulator of insulin signaling. SDR is predominantly expressed in glia and is secreted into the hemolymph. Larvae lacking SDR grow at a faster rate, thereby increasing adult body size. Conversely, overexpression of SDR reduces body growth non-cell-autonomously. SDR is structurally similar to the extracellular domain of InR and interacts with several Dilps in vitro independent of Imp-L2, the ortholog of the mammalian insulin-like growth factor-binding protein 7 (IGFBP7). We further demonstrate that SDR is constantly secreted into the hemolymph independent of nutritional status and is essential for adjusting insulin signaling under adverse food conditions. We propose that Drosophila uses a secreted decoy to fine-tune systemic growth against fluctuations of circulating insulin levels.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Insulina/metabolismo , Transdução de Sinais , Somatomedinas/metabolismo , Animais , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hemolinfa/metabolismo , Larva , Neuroglia/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
3.
Genetics ; 183(2): 517-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19620394

RESUMO

Rheb, a Ras-like small GTPase conserved from human to yeast, controls Tor kinase and plays a central role in the regulation of cell growth depending on extracellular conditions. Rhb1 (a fission yeast homolog of Rheb) regulates amino acid uptake as well as response to nitrogen starvation. In this study, we generated two mutants, rhb1-DA4 and rhb1-DA8, and characterized them genetically. The V17A mutation within the G1 box defined for the Ras-like GTPases was responsible for rhb1-DA4 and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events--the induction of the meiosis-initiating gene mei2+ and cell division without cell growth--are a typical response to nitrogen starvation. Under nitrogen-rich conditions, Rheb stimulates Tor kinase, which, in turn, suppresses the response to nitrogen starvation. While amino acid uptake was prevented by both rhb1-DA4 and rhb1-DA8 in a dominant fashion, the response to nitrogen starvation was prevented only by rhb1-DA4. rhb1-DA8 thereby allowed genetic dissection of the Rheb-dependent signaling cascade. We postulate that the signaling cascade may branch below Rhb1 or Tor2 and regulate the amino acid uptake and response to nitrogen starvation independently.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Nitrogênio/metabolismo , Schizosaccharomyces/genética , Sequência de Aminoácidos , Western Blotting , Divisão Celular/efeitos dos fármacos , Genes Dominantes , Dados de Sequência Molecular , Nitrogênio/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...