Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(68): e202302271, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37581946

RESUMO

Two new series of complexes with pyridine-containing Schiff bases, [VV O(SALIEP)L] and [VV O(Cl-SALIEP)L] (SALIEP=N-(salicylideneaminato)-2-(2-aminoethylpyridine; Cl-SALIEP=N-(5-chlorosalicylideneaminato)-2-(2-aminoethyl)pyridine, L=catecholato(2-) ligand) have been synthesized. Characterization by 1 H and 51 V NMR and UV-Vis spectroscopies confirmed that: 1) most complexes form two major geometric isomers in solution, and [VV O(SALIEP)(DTB)] (DTB=3,5-di-tert-butylcatecholato(2-)) forms two isomers that equilibrate in solution; and 2) tert-butyl substituents were necessary to stabilize the reduced VIV species (EPR spectroscopy and cyclic voltammetry). The pyridine moiety within the Schiff base ligands significantly changed their chemical properties with unsubstituted catecholate ligands compared with the parent HSHED (N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine) Schiff base complexes. Immediate reduction to VIV occurred for the unsubstituted-catecholato VV complexes on dissolution in DMSO. By contrast, the pyridine moiety within the Schiff base significantly improved the hydrolytic stability of [VV O(SALIEP)(DTB)] compared with [VV O(HSHED)(DTB)]. [VV O(SALIEP)(DTB)] had moderate stability in cell culture media. There was significant cellular uptake of the intact complex by T98G (human glioblastoma) cells and very good anti-proliferative activity (IC50 6.7±0.9 µM, 72 h), which was approximately five times higher than for the non-cancerous human cell line, HFF-1 (IC50 34±10 µM). This made [VV O(SALIEP)(DTB)] a potential drug candidate for the treatment of advanced gliomas by intracranial injection.


Assuntos
Antineoplásicos , Complexos de Coordenação , Glioblastoma , Compostos Organometálicos , Humanos , Vanádio/química , Bases de Schiff/química , Compostos Organometálicos/química , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Piridinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Ligantes , Complexos de Coordenação/farmacologia
2.
Inorg Chem ; 61(51): 20757-20773, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36519680

RESUMO

A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 µM DTB, 34 ± 7 µM 3-MeCat, and 19 ± 2 µM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 µM DTB, 18 ± 3 µM 3-MeCat, and 8.1 ± 0.6 µM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.


Assuntos
Complexos de Coordenação , Vanádio , Humanos , Vanádio/farmacologia , Vanádio/química , Cisplatino , Bases de Schiff/farmacologia , Bases de Schiff/química , Água , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/farmacologia , Ligantes
3.
Front Chem ; 10: 827530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350775

RESUMO

Lipoquinones, such as ubiquinones (UQ) and menaquinones (MK), function as essential lipid components of the electron transport system (ETS) by shuttling electrons and protons to facilitate the production of ATP in eukaryotes and prokaryotes. Lipoquinone function in membrane systems has been widely studied, but the exact location and conformation within membranes remains controversial. Lipoquinones, such as Coenzyme Q (UQ-10), are generally depicted simply as "Q" in life science diagrams or in extended conformations in primary literature even though specific conformations are important for function in the ETS. In this study, our goal was to determine the location, orientation, and conformation of UQ-2, a truncated analog of UQ-10, in model membrane systems and to compare our results to previously studied MK-2. Herein, we first carried out a six-step synthesis to yield UQ-2 and then demonstrated that UQ-2 adopts a folded conformation in organic solvents using 1H-1H 2D NOESY and ROESY NMR spectroscopic studies. Similarly, using 1H-1H 2D NOESY NMR spectroscopic studies, UQ-2 was found to adopt a folded, U-shaped conformation within the interface of an AOT reverse micelle model membrane system. UQ-2 was located slightly closer to the surfactant-water interface compared to the more hydrophobic MK-2. In addition, Langmuir monolayer studies determined UQ-2 resided within the monolayer water-phospholipid interface causing expansion, whereas MK-2 was more likely to be compressed out and reside within the phospholipid tails. All together these results support the model that lipoquinones fold regardless of the headgroup structure but that the polarity of the headgroup influences lipoquinone location within the membrane interface. These results have implications regarding the redox activity near the interface as quinone vs. quinol forms may facilitate locomotion of lipoquinones within the membrane. The location, orientation, and conformation of lipoquinones are critical for their function in generating cellular energy within membrane ETS, and the studies described herein shed light on the behavior of lipoquinones within membrane-like environments.

4.
J Inorg Biochem ; 203: 110873, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31706224

RESUMO

Luteinizing hormone receptors (LHR), expressed at physiological numbers <30,000 receptors per cell, translocate to and signal within membrane rafts following binding of human chorionic gonadotropin (hCG). Similarly LHR signal in cells when treated with bis(maltolato)oxovanadium(IV) (BMOV), bis(ethylmaltolato)oxovanadium(IV) (BEOV) or VOSO4, which decrease membrane lipid packing. Overexpressed LHR (>85,000 receptors per cell) are found in larger clusters in polarized homo-transfer fluorescence resonance energy transfer (homo-FRET) studies that were not affected by either hCG or vanadium compounds. Intracellular cyclic adenylate monophosphate (cAMP) levels indicate that only clustered LHR are active and produce the intracellular second messenger, cAMP. When LHR are over-expressed, cell signaling is unaffected by binding of hCG or vanadium compounds. To confirm the existence of intact complex, the EPR spectra of vanadium compounds in cell media were obtained using 1 mM BMOV, BEOV or VOSO4. These data were used to determine intact complex in a 10 µM solution and verified by speciation calculations. Effects of BMOV and BEOV samples were about two-fold greater than those of aqueous vanadium(IV) making it likely that intact vanadium complex are responsible for effects of LHR function. This represents a new mechanism for activation of a G protein-coupled receptor; perturbations in the lipid bilayer by vanadium compounds lead to aggregation and accumulation of physiological numbers of LHR in membrane raft domains where they initiate signal transduction and production of cAMP, a second messenger involved in signaling.


Assuntos
Complexos de Coordenação/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Receptores do LH/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Lipídeos de Membrana/metabolismo , Vanádio/química
5.
Biometals ; 32(3): 545-561, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31209680

RESUMO

Oncolytic viruses rewire the immune system and can lead to long-lasting antitumor defenses against primary and metastatic tumors. However, results from clinical studies have shown heterogeneity in responses suggesting that multiplexed approaches may be necessary to consistently generate positive outcomes in patients. To this end, we explored the combination of oncolytic rhabdovirus VSV∆51 with vanadium(V) dipicolinate derivatives, which have already been explored for their antidiabetic properties in animal models. The combination of vanadium-based dipicolinate compounds with VSV∆51 significantly increased viral replication and cytotoxicity in the human renal cell carcinoma cell line 786-0. The effects of three vanadium(V)-dipicolinate coordination complexes ([VO2dipic]-, [VO2dipic-OH]- and [VO2dipic-Cl]- with -OH or -Cl in the para position) were compared to that of the simple salts using spectroscopy and speciation profiles. Like the vanadate salts and the vanadyl cation, all dioxovanadium(V) dipicolinate complexes tested were found to increase viral infection and cytotoxicity when used in combination with VSV∆51. Viral sensitization is dependent on the vanadium since free dipicolinate ligands exerted no effect on viral infection and viability. The ability of these complexes to interact with interfaces and the stability of the complexes were evaluated under physiological conditions. Results indicate that these complexes undergo hydrolysis in cell culture media thereby generating vanadate. The vanadium dipicolinate derivatives in the context of immunovirotherapy shares similarities with previous studies exploring the antidiabetic properties of the compounds. The synergy between vanadium compounds and the oncolytic virus suggests that these compounds may be valuable in the development of novel and effective pharmaco-viral therapies.


Assuntos
Antivirais/farmacologia , Complexos de Coordenação/farmacologia , Terapia Viral Oncolítica , Vírus Oncolíticos/efeitos dos fármacos , Ácidos Picolínicos/farmacologia , Compostos de Vanádio/farmacologia , Viroses/terapia , Antivirais/síntese química , Antivirais/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ácidos Picolínicos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Compostos de Vanádio/química , Viroses/tratamento farmacológico
6.
Front Chem ; 6: 519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515375

RESUMO

51V NMR spectroscopy is used to document, using speciation analysis, that one oxometalate is a more potent growth inhibitor of two Mycobacterial strains than other oxovanadates, thus demonstrating selectivity in its interaction with cells. Historically, oxometalates have had many applications in biological and medical studies, including study of the phase-problem in X-ray crystallography of the ribosome. The effect of different vanadate salts on the growth of Mycobacterium smegmatis (M. smeg) and Mycobacterium tuberculosis (M. tb) was investigated, and speciation was found to be critical for the observed growth inhibition. Specifically, the large orange-colored sodium decavanadate (V10 O 28 6 - ) anion was found to be a stronger inhibitor of growth of two mycobacterial species than the colorless oxovanadate prepared from sodium metavanadate. The vanadium(V) speciation in the growth media and conversion among species under growth conditions was monitored using 51V NMR spectroscopy and speciation calculations. The findings presented in this work is particularly important in considering the many applications of polyoxometalates in biological and medical studies, such as the investigation of the phase-problem in X-ray crystallography for the ribosome. The findings presented in this work investigate the interactions of oxometalates with other biological systems.

7.
J Inorg Biochem ; 186: 267-279, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990751

RESUMO

Vanadium-dependent haloperoxidases are a class of enzymes that catalyze oxidation reactions with halides to form halogenated organic products and water. These enzymes include chloroperoxidase and bromoperoxidase, which have very different protein sequences and sizes, but regardless the coordination environment of the active sites is surprisingly constant. In this manuscript, the comparison of the coordination chemistry of V-containing-haloperoxidases of the trigonal bipyramidal geometry was done by data mining. The catalytic cycle imposes changes in the coordination geometry of the vanadium to accommodate the peroxidovanadium(V) intermediate in an environment we describe as a distorted square pyramidal geometry. During the catalytic cycle, this intermediate converts to a trigonal bipyramidal intermediate before losing the halogen and forming a tetrahedral vanadium-protein intermediate. Importantly, the catalysis is facilitated by a proton-relay system supplied by the second sphere coordination environment and the changes in the coordination environment of the vanadium(V) making this process unique among protein catalyzed processes. The analysis of the coordination chemistry shows that the active site is very tightly regulated with only minor changes in the coordination geometry. The coordination geometry in the protein structures deviates from that found for both small molecules crystalized in the absence of protein and the reported functional small molecule model compounds. At this time there are no examples reported of a structurally similar small molecule with the geometry observed for the peroxidovanadium(V) in the active site of the vanadium-containing haloperoxidases.


Assuntos
Cloreto Peroxidase , Halogênios , Peroxidases , Vanádio , Animais , Catálise , Domínio Catalítico , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Halogênios/química , Halogênios/metabolismo , Humanos , Oxirredução , Peroxidases/química , Peroxidases/metabolismo , Vanádio/química , Vanádio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...