Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biomech ; 172: 112199, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959821

RESUMO

This study investigates the effects of fall configurations on hip fracture risk with a focus on pelvic soft tissue shape. This was done by employing a whole-body finite element (FE) model. Soft tissue thickness around the pelvis was measured using a standing CT system, revealing a trend of increased trochanteric soft tissue thickness with higher BMI and younger age. In the lateroposterior region from the greater trochanter, the soft tissues of elderly females were thin with a concave shape. Based on the THUMS 5F model, an elderly female FE model with a low BMI was developed by morphing the soft tissue shape around the pelvis based on the CT data. FE simulation results indicated that the lateroposterior fall led to a higher femoral neck force for the elderly female model compared to the lateral fall. One reason may be related to the thin soft tissue of the pelvis in the lateroposterior region. Additionally, the effectiveness of interventions that can help mitigating hip fractures in lateroposterior falls on the thigh-hip and hip region was assessed using the elderly female model. The attenuation rate of the femoral neck force by the hip protector was close to zero in the thigh-hip fall and high in the hip fall, whereas the attenuation rate of the compliant floor was high in both falls. This study highlights age-related changes in the soft tissue shape of the pelvis in females, particularly in the lateroposterior regions, which may influence force mitigation for the hip joint during lateroposterior falls.

2.
J Biomech ; 142: 111262, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36027638

RESUMO

Hip fractures caused by falls are important health problems for the elderly. Many studies used finite element (FE) models of the femur and its surroundings to evaluate the hip fracture risk during the impact phase in a fall. In this study, the whole-body human FE model (THUMS) of a small female was applied from the descent to the impact phase in a fall to understand the effect of the whole body. Brosh's material model was used for the soft tissue of the hip. A low-BMI and high-BMI model were developed based on THUMS (middle-BMI). For the middle-BMI model, the torso angle and the pelvis impact velocity were 45.2° and 2.62 m/s at the time of pelvis impact. The effective mass changed with time, and was 18.3 kg when the femoral neck force was maximum. The femoral neck force was 2.11 kN for the low-BMI model. The femoral neck forces when wearing a soft and a hard hip protector, and when falling on an energy-absorbing floor were compared for the FE models of human and a hip protector testing system. Though the force attenuation of the protective devices was 32.0-44.3 % in the testing system, the force attenuation in the middle-BMI was 0.1-22.2 %. In the low-BMI model, the attenuation of the soft protector was limited (4.2 %) because the hip protector protruded from the outer surface, so the contact force was concentrated at the hip region. This research suggests the importance of including the whole body to evaluate the hip fracture risk.


Assuntos
Fraturas do Quadril , Idoso , Feminino , Fêmur , Análise de Elementos Finitos , Fraturas do Quadril/etiologia , Articulação do Quadril , Humanos , Equipamentos de Proteção/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...