Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19195-19206, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38956990

RESUMO

Dissociative photodetachment dynamics simulations were conducted to study the CH3O-(H2O) → CH3O + H2O + e- reaction using classical molecular dynamics (MD) and ring-polymer molecular dynamics (RPMD) techniques on two newly formulated neutral potential energy surfaces (PES1 and PES2) by different research groups. While the dissociation dynamics exhibited similarities between classical MD and RPMD, there were noticeable differences in the fluctuation of probability densities for the internal modes due to nuclear quantum effects. Upon comparison of our findings with experimental data concerning the electron binding energy distribution and photofragment relative energy, it suggests that the potential energy landscapes of PES2 are reasonably precise. The time evolution of occupied vibrational states of the H2O photofragment is presented in this study.

2.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930853

RESUMO

Ion-molecular reactions play a significant role in molecular evolution within the interstellar medium. In this study, the entrance channel reaction, H3+ + C2H4 → H2 + C2H5+, was investigated using classical molecular dynamic (classical MD) and ring polymer molecular dynamic (RPMD) simulation techniques. We developed an analytical potential energy surface function with a permutationally invariant polynomial basis, specifically employing the monomial symmetrized approach. Our dynamic simulations reproduced the rate coefficient of 300 K for H3+ + C2H4 → H2 + C2H5+, aligning reasonably well with the values in the kinetic database commonly utilized in astrochemistry. The thermal rate coefficients obtained using both the classical MD and RPMD techniques exhibited an increase from 100 K to 300 K as the temperature rose. Additionally, we analyzed the excess energy distribution of the C2H5+ fragment with respect to temperature to investigate the indirect reaction pathway of C2H5+ → H2 + C2H3+. This result suggests that the indirect reaction pathway of C2H5+ → H2 + C2H3+ holds minor significance, although the distribution highly depends on the collisional temperature.

3.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959873

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous interstellar molecules. However, the formation mechanisms of PAHs and even the simplest cyclic aromatic hydrocarbon, benzene, are not yet fully understood. Recently, we reported the statistical and dynamical properties in the reaction mechanism of Fe+-catalyzed acetylene cyclotrimerization, whereby three acetylene molecules are directly converted to benzene. In this study, we extended our previous work and explored the possible role of the complex of other 3d transition metal cations, TM+ (TM = Sc, Ti, Mn, Co, and Ni), as a catalyst in acetylene cyclotrimerization. Potential energy profiles for bare TM+-catalyst (TM = Sc and Ti), for TM+NC--catalyst (TM = Sc, Ti, Mn, Co, and Ni), and for TM+-(H2O)8-catalyst (TM = Sc and Ti) systems were obtained using quantum chemistry calculations, including the density functional theory levels. The calculation results show that the scandium and titanium cations act as efficient catalysts in acetylene cyclotrimerization and that reactants, which contain an isolated acetylene and (C2H2)2 bound to a bare (ligated) TM cation (TM = Sc and Ti), can be converted into a benzene-metal-cation product complex without an entrance barrier. We found that the number of electrons in the 3d orbitals of the transition metal cation significantly contributes to the catalytic efficiency in the acetylene cyclotrimerization process. On-the-fly Born-Oppenheimer molecular dynamics (BOMD) simulations of the Ti+-NC- and Ti+-(H2O)8 complexes were also performed to comprehensively understand the nuclear dynamics of the reactions. The computational results suggest that interstellar benzene can be produced via acetylene cyclotrimerization reactions catalyzed by transition metal cation complexes.

4.
Phys Chem Chem Phys ; 25(20): 14016-14027, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161528

RESUMO

The process of protonated formic acid dissociating from the transition state was studied using ring-polymer molecular dynamics (RPMD), classical MD, and quasi-classical trajectory (QCT) simulations. Temperature had a strong influence on the branching fractions for the HCO+ + H2O and CO + H3O+ dissociation channels. The RPMD and classical MD simulations showed similar behavior, but the QCT dynamics were significantly different owing to the excess energies in the quasi-classical trajectories. Machine-learning analysis identified several key features in the phase information of the vibrational motions at the transition state. We found that the initial configuration and momentum of a hydrogen atom connected to a carbon atom and the shrinking coordinate of the CO bond at the transition state play a role in the dynamics of HCO+ + H2O production.

5.
Chemphyschem ; 24(10): e202200939, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36744394

RESUMO

In the interstellar medium, the H2 adsorption and desorption on the solid water ice are crucial for chemical and physical processes. We have recently investigated the probabilities of H2 sticking on the (H2 O)8 ice, which has quadrilateral surfaces. We have extended the previous work using classical MD and ring-polymer molecular dynamics (RPMD) simulations to the larger ice clusters, (H2 O)10 and (H2 O)12 , which have pentagonal and hexagonal surfaces, respectively. The H2 sticking probabilities decreased as the temperature increased for both cluster cases, whereas the cluster-size-independent profiles were observed. It is thought that the size independence of the probabilities is qualitatively understood from the similar binding energies for all the three cluster systems. Furthermore, the RPMD sticking probabilities are smaller than the classical ones because of the reduction in the binding energies owing to nuclear quantum effects, such as vibrational quantization.

6.
J Phys Chem A ; 126(49): 9244-9258, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36475674

RESUMO

The H- + C2H2 → H2 + C2H- reaction is important in understanding the production mechanisms of anionic molecules in interstellar environments. Herein, the rate coefficients for the H- + C2H2 → H2 + C2H- reaction were calculated using ring-polymer molecular dynamics (RPMD), classical molecular dynamics (MD), and quasi-classical trajectory (QCT) approaches on a newly developed ab initio potential energy surface (PES) in full dimensions. PES was constructed by fitting a large number of ab initio energy points and their gradients using the permutationally invariant polynomial basis set method. There was no barrier in the reaction coordinates, which was a collinear-dominated reaction, and the reaction proceeded exothermically. It is found that the fitted PES provides the appropriate thermal rate coefficients based on all RPMD, classical MD, and QCT simulations at higher temperatures. The evaluation of the rate coefficients at lower temperatures should be conducted carefully because the fitting of the PES associated with the long-range interaction should be further improved. The spatial distribution of the nucleus allows a more effective attraction between the reactants.

7.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431867

RESUMO

Benzene is the simplest building block of polycyclic aromatic hydrocarbons and has previously been found in the interstellar medium. Several barrierless reaction mechanisms for interstellar benzene formation that may operate under low-temperature and low-pressure conditions in the gas phase have been proposed. In this work, we studied different mechanisms for interstellar benzene formation based on acetylene cyclotrimerization catalyzed by Fe+ bound to solid water clusters through quantum chemistry calculations. We found that benzene is formed via a single-step process with one transition state from the three acetylene molecules on the Fe+(H2O)n (n = 1, 8, 10, 12 and 18) cluster surface. Moreover, the obtained mechanisms differed from those of single-atom catalysis, in which benzene is sequentially formed via multiple steps.

8.
J Chem Phys ; 150(14): 144112, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30981261

RESUMO

Non-adiabatic transitions are quite often of critical importance in chemical reactions. We have recently developed the basis expansion leaping multi-configuration Gaussian (BEL MCG) method to obtain time-propagated wave packets describing multidimensional reactive molecular systems such as quantum tunneling [T. Murakami and T. J. Frankcombe, J. Chem. Phys. 149, 134113 (2018)]. In this work, we develop BEL MCG for multiple electronic state problems. We present two formalisms for the BEL MCG description of multi-state wave packets, namely, "multi-set" and "single-set." We pay particular attention to investigate what is required to yield accurate dynamics. When there is low population on an electronic state, it is important in the "multi-set" case that the reexpression on that electronic state is applied rigorously. The sharing of basis functions in the single-set approach leads to needing a lower number of basis functions than in the multi-set approach, making it preferable for direct dynamics.

9.
J Chem Phys ; 149(13): 134113, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292206

RESUMO

Quantum phenomena are quite often of critical importance in chemical reactions. Thus the development of quantum molecular dynamics approaches is required to study the role of quantum effects such as tunnelling in chemical processes. The basis expansion leaping multi-configuration Gaussian (BEL MCG) method has been developed to obtain time-propagated wave packets describing reactive molecular systems. Here we examine the applicability of BEL MCG to double well problems in several dimensions. We pay particular attention to what is required to yield highly accurate dynamics with respect to several key features of the BEL MCG propagation. The importance of using basis functions of a width appropriate to the nature of the potential energy surface in the region of configuration space where each basis function is located is highlighted, which has implications for virtually all quantum molecular dynamics methods utilising Gaussian basis functions.

10.
Phys Chem Chem Phys ; 14(32): 11546-55, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22806058

RESUMO

On-the-fly nonadiabatic ab initio molecular dynamics simulations have been carried out for three anionic species of indolylmaleimides (3-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione, IM) to clarify the mechanisms of photochemical reactions. The results are obtained for (i) a monovalent anion with a deprotonated indole NH group (IM(-)'), (ii) a monovalent anion with a deprotonated maleimide NH group (IM(-)'') and (iii) a divalent anion with doubly deprotonated indole and the maleimide NH groups (IM(2-)). Quantum chemical calculations are treated at the three state averaged complete-active space self-consistent field level for 6 electrons in 5 orbitals with the cc-pVDZ basis set (CAS (6, 5) SCF/cc-pVDZ). Molecular dynamics simulations are performed with electronically nonadiabatic transitions included using the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH) method. It is found that the nonadiabatic transitions occur accompanied by the stretching and shrinking motions of the N(7)-C(8) bond in the case of IM(-)' and the C(11)-N(12) bond in IM(2-) rather than the twisting motion of the dihedral angle. We also found that the ultrafast S(2)→ S(1) nonadiabatic transitions occur through the conical intersection (CoIn) right after photoexcitation to S(2) in IM(-)' and IM(2-). Furthermore, the S(1)→ S(0) nonadiabatic transitions are found to take place in IM(-)'. It is concluded that IM(2-) would mainly contribute to the photoemission, because the S(1)← S(0) and S(2)← S(0) transitions of IM(-)'' are dipole-forbidden transitions and, moreover, IM(2-) is found to be the only species to stay in the S(1) state without non-radiative decay.


Assuntos
Indóis/química , Maleimidas/química , Simulação de Dinâmica Molecular , Ânions/química , Teoria Quântica , Termodinâmica
11.
Phys Chem Chem Phys ; 12(33): 9783-93, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20571686

RESUMO

Various indolylmaleimides (IMs) were synthesized, and their fluorescence (FL) and chemiluminescence (CL) were measured. The substitution at the 2-position of the indole ring and the 3- or 4-position of the maleimide moiety caused an obvious change in the FL and CL of the IMs. An almost on-off switching of the FL of the IMs was observed. The intramolecular charge transfer from the indole moiety to the maleimide moiety occurred in 3-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione. In the FL of the IMs, CASPT2 calculations showed deprotonation of the NH group of the indole ring and the maleimide moiety at the excited state. The C[double bond, length as m-dash]C bond in the maleimide moiety was needed for strong CL in the IMs without substitution at the 2-position of the indole ring. The relationships between the FL or CL properties and the structures of the IMs were clarified. These results provide significant information on the rational design of IMs as FL and CL probes.


Assuntos
Indóis/química , Maleimidas/química , Modelos Teóricos , Medições Luminescentes , Maleimidas/síntese química , Conformação Molecular , Teoria Quântica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...