Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 174, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851752

RESUMO

BACKGROUND: Obesity is a metabolic syndrome where allelic and environmental variations together determine the susceptibility of an individual to the disease. Caloric restriction (CR) is a nutritional dietary strategy recognized to be beneficial as a weight loss regime in obese individuals. Preconceptional parental CR is proven to have detrimental effects on the health and development of their offspring. As yet studies on maternal CR effect on their offspring are well established but paternal CR studies are not progressing. In current study, the impact of different paternal CR regimes in diet-induced obese male Wistar rats (WNIN), on their offspring concerning metabolic syndrome are addressed. METHODS: High-fat diet-induced obese male Wistar rats were subjected to caloric restriction of 50% (HFCR-I) and 40% (HFCR-II) and then they were mated with normal females. The male parent's reproductive function was assessed by sperm parameters and their DNMT's mRNA expression levels were also examined. The offspring's metabolic function was assessed by physiological, biochemical and molecular parameters. RESULTS: The HFCR-I male parents have shown reduced body weights, compromised male fertility and reduced DNA methylation activity. Further, the HFCR-I offspring showed attenuation of the AMPK/SIRT1 pathway, which is associated with the progression of proinflammatory status and oxidative stress. In line, the HFCR-I offspring also developed altered glucose and lipid homeostasis by exhibiting impaired glucose tolerance & insulin sensitivity, dyslipidemia and steatosis. However, these effects were largely mitigated in HFCR-II offspring. Regarding the obesogenic effects, female offspring exhibited greater susceptibility than male offspring, suggesting that females are more prone to the influences of the paternal diet. CONCLUSION: The findings highlight that HFCR-I resulted in paternal undernutrition, impacting the health of offspring, whereas HFCR-II largely restored the effects of a high-fat diet on their offspring. As a result, moderate caloric restriction has emerged as an effective weight loss strategy with minimal implications on future generations. This underscores the shared responsibility of fathers in contributing to sperm-specific epigenetic imprints that influence the health of adult offspring.


Assuntos
Restrição Calórica , Metilação de DNA , Dieta Hiperlipídica , Obesidade , Ratos Wistar , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/etiologia , Masculino , Feminino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Transdução de Sinais , Gravidez
2.
Andrologia ; 50(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28718974

RESUMO

Obesity is a multifactorial disorder associated with increased body adiposity, chronic oxidative stress which contributes to impaired fertility in males. Diet restriction and anti-oxidant supplementations are known to protect obese subjects from oxidative stress and improves fertility. However, the role of oxidative stress and the age of intervention in restoring male fertility are poorly understood. This study was aimed to assess the effect of diet restriction on fertility with respect to the age of intervention, body composition and oxidative stress using WNIN/Ob obese mutant rat strain. Unlike lean and carrier phenotypes, obese rats are hyperphagic, hyperlipaemic and infertile. Male obese rats aged for 35, 60 and 90 days were fed either ad libitum or diet restricted for 6 weeks. Upon diet restriction mean body weight, total body fat percentage, circulatory lipids and oxidative stress markers were significantly reduced and it follows the order as 35 < 60 < 90 days. Diet-restricted males of the three age groups were allowed to mate with female carrier rats, and fertility was restored only in 35-day group. Diet restriction in male obese WNIN/Ob rats lowered the rate of body weight gain, with reduced oxidative stress overall and fertility restoration in groups intervened at pre-pubertal stages.


Assuntos
Restrição Calórica , Infertilidade Masculina/prevenção & controle , Obesidade/dietoterapia , Fatores Etários , Animais , Composição Corporal , Modelos Animais de Doenças , Feminino , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/fisiopatologia , Masculino , Mutação , Obesidade/complicações , Obesidade/genética , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia , Puberdade , Ratos , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Maturidade Sexual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...