Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(5): 054801, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135263

RESUMO

The propensity for ion-pairing can often dictate the thermodynamic and kinetic properties of electrolyte solutions. Fast and accurate estimates of ion-pairing can thus be extremely valuable for supplementing design and screening efforts for novel electrolytes. We introduce an efficient cluster model to estimate the local ion-pair potential-of-mean-force between ionic solutes in electrolytes. The model incorporates an ion-pair and a few layers of explicit solvent in a gas-phase cluster and leverages an enhanced sampling approach to achieve high efficiency and accuracy. We employ harmonic restraints to prevent solvent escape from the cluster and restrict sampling of large inter-ion distances. We develop a cluster ion-pair sampling tool that implements our cluster model and demonstrate its potential utility for screening simple and poly-electrolyte systems.

2.
J Phys Chem B ; 125(17): 4447-4455, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881867

RESUMO

Designing battery electrolytes for lithium-ion batteries has been a topic of extensive research for decades. The ideal electrolyte must have a large conductivity as well as high Li+ transference number. The conductivity is very sensitive to the nature of the anions and dynamical correlations between ions. For example, lithium bis(trifluoromethane)sulfonimide (LiTFSI) has a large conductivity, but the chemically similar lithium trifluoromethanesulfonate (LiOTf) shows poor conductivity. In this work, we study the binding of Li+ to these anions in an ethylene carbonate (EC) solvent using enhanced sampling metadynamics. The evaluated free energies display a large dissociation barrier for LiOTf compared to LiTFSI, suggesting long-lived ion-pair formation in the former but not the latter. We probe these observations via unbiased molecular dynamics simulations and metadynamics simulations of TFSI with a hypothetical OTF-like partial charge model indicating an electrostatic origin for those differences. Our results highlight the deleterious impact of sulfonate groups in lithium-ion battery electrolytes and provide a new basis for the assessment of electrolyte designs.

3.
J Phys Chem B ; 124(28): 5899-5906, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32551633

RESUMO

Strategic incorporation of fluorinated prolines can accelerate folding and increase thermal stability of proteins. It has been suggested that this behavior emerges from puckering effects induced by fluorination of the proline ring. We use electronic structure calculations to characterize the potential energy surface (PES) along puckering coordinates for a simple dipeptide model of proline and its fluorinated derivatives. Significant shifts in puckering trends between gas phase and implicit solvent calculations shed light on the effect of solvation on electronic structure and conformational preferences of the ring. This solvation induced puckering effect is previously unknown in the context of prolines. The PES based on implicit solvent is then utilized to construct a correction for a classical force field. The corrected force field accurately captures the experimental conformational equilibrium including the coupling between ring puckering and cis-trans isomerism in fluorinated prolines. This method can be extended to other rings and substituents besides fluorine.


Assuntos
Dipeptídeos , Prolina , Isomerismo , Conformação Molecular , Proteínas
4.
Annu Rev Phys Chem ; 71: 461-484, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32155383

RESUMO

Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.

5.
Sci Rep ; 8(1): 10736, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013026

RESUMO

Li+ transport within a solid electrolyte interphase (SEI) in lithium ion batteries has challenged molecular dynamics (MD) studies due to limited compositional control of that layer. In recent years, experiments and ab initio simulations have identified dilithium ethylene dicarbonate (Li2EDC) as the dominant component of SEI layers. Here, we adopt a parameterized, non-polarizable MD force field for Li2EDC to study transport characteristics of Li+ in this model SEI layer at moderate temperatures over long times. The observed correlations are consistent with recent MD results using a polarizable force field, suggesting that this non-polarizable model is effective for our purposes of investigating Li+ dynamics. Mean-squared displacements distinguish three distinct Li+ transport regimes in EDC - ballistic, trapping, and diffusive. Compared to liquid ethylene carbonate (EC), the nanosecond trapping times in EDC are significantly longer and naturally decrease at higher temperatures. New materials developed for fast-charging Li-ion batteries should have a smaller trapping region. The analyses implemented in this paper can be used for testing transport of Li+ ion in novel battery materials. Non-Gaussian features of van Hove self -correlation functions for Li+ in EDC, along with the mean-squared displacements, are consistent in describing EDC as a glassy material compared with liquid EC. Vibrational modes of Li+ ion, identified by MD, characterize the trapping and are further validated by electronic structure calculations. Some of this work appeared in an extended abstract and has been reproduced with permission from ECS Transactions, 77, 1155-1162 (2017).

6.
ChemSusChem ; 11(12): 1927-1932, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29722479

RESUMO

Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work.

7.
Top Curr Chem (Cham) ; 376(2): 7, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435669

RESUMO

Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li[Formula: see text] deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li[Formula: see text] ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li[Formula: see text] thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li[Formula: see text] transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.


Assuntos
Dioxolanos/química , Simulação de Dinâmica Molecular , Propano/análogos & derivados , Eletrólitos/química , Propano/química , Soluções , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...