Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 265: 129021, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248731

RESUMO

Over past twenty years, daily usage of Microplastics (MPs) and their pollution are gradually increasing. Especially, the polyethylene bags were used for food storage. So their productivity as well discarding after use are rapidly growing and shown their great impact on the environment. Hence, there is need to control the plastics from environment decomposition. For that, we have attempted that preparation of NiAl2O4 Spinels by two different methods such as co-precipitation and hydrothermal. The synthesized spinels were thoroughly studied by some instrumental techniques like X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV-Vis) spectrophotometer). The photocatalytic experiment was adopted for the degradation of commercially available polyethylene bags using prepared spinels. The obtained results from FTIR after degradation process confirmed that the polyethylene sheet was degraded in 5 h with the help of prepared spinels and the weight loss is 12.5% obtained using hydrothermally prepared spinels. This study shows new path to develop more functional materials for the degradation of MPs.


Assuntos
Plásticos , Polietileno , Óxido de Alumínio , Catálise , Óxido de Magnésio , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Sci Pharm ; 81(1): 93-114, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641331

RESUMO

A rapid, reversed-phase liquid chromatographic method was developed for the quantitative determination of Atorvastatin calcium, its related substances (12 impurities), and degradation impurities in bulk drugs. The chromatographic separation was achieved on a Zorbax Bonus-RP column by employing a gradient elution with water-acetonitrile-trifluoroacetic acid as the mobile phase in a shorter run time of 25 min. The flow rate was 1.0 mL/min and the detection wavelength was 245 nm. The drug substance was subjected to stress studies such as hydrolysis, oxidation, photolysis, and thermal degradation, and considerable degradation was observed in acidic hydrolysis, oxidative, thermal, and photolytic stress conditions. The formed degradation products were reported and were well-resolved from the Atorvastatin and its related substances. The stressed samples were quantified against a qualified reference standard and the mass balance was found to be close to 99.5% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. Atorvastatin), which demonstrates the stability-indicating capability of the method. The method was validated in agreement with ICH requirements. The method developed here was single and shorter (25 min method for the determination of all 12 related impurities of Atorvastatin and its degradation products), with clearly better resolution and higher sensitivity than the European (85 min method for the determination of six impurities) and United States pharmacopeia (115 min and 55 min, two different methods for the determination of six related substances).

3.
Sci Pharm ; 80(4): 903-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23264939

RESUMO

A novel, stability-indicating UHPLC method was developed for the quantitative determination of Abacavir sulfate, its related substances, and forced degradation impurities in bulk drugs. The chromatographic separation was achieved on a Waters Acquity BEH C(8), 50 mm × 2.1 mm, 1.7 µm particle size column with a mobile containing a gradient mixture of solution A (0.10 % v/v o-phosphoric acid in water) and solution B (0.10% v/v o-phosphoric acid in methanol). The flow rate was set at 0.40 mL/min and the run time was 6.0 min. The drug substance was subjected to the stress studies of hydrolysis, oxidation, photolysis, and thermal degradation. Abacavir sulfate was found to degrade significantly under acidic hydrolysis and oxidative stress conditions. The formed degradation products were reported and were well-resolved from Abacavir and its related substances. The mass balance was found to be satisfactory in all of the stress conditions, thus proving the stability-indicating capability of the method. The developed UHPLC method was validated to be in agreement with ICH requirements and found to be rapid, accurate, precise, linear, specific, and suitable for the quantitative determination of related substances and degradants in the bulk drug samples of Abacavir sulfate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...