Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 2(3): 1160-1168, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32201862

RESUMO

Thermoresponsive polymers reversibly react to changes in temperature and water content of their environment (i.e., relative humidity, RH). In the present contribution, the thermoresponsiveness of poly(N-vinylcaprolactam) thin films cross-linked by di(ethylene glycol) divinyl ether deposited by initiated chemical vapor deposition are investigated to assess their applicability to sensor and actuator setups. A lower critical solution temperature (LCST) is observed at around 16 °C in aqueous environment, associated with a dramatic change in film thickness (e.g., 200% increase at low temperatures) and refractive index, while only thermal expansion of the polymeric system is found, when ramping the temperature in dry atmosphere. In humid environment, we observed a significant response occurring in low RH (already below 5% RH), with the moisture swelling the thin film (up to 4%), but mainly replacing air in the polymeric structure up to ∼40% RH. Non-temperature-dependent swelling is observed up to 80% RH. Above that, thermoresponsive behavior is also demonstrated to be present in humid environment for the first time, whereas toward 100% RH, film thickness and index appear to approach the values obtained in water at the respective temperatures. The response times are similar in a large range of RH and are faster than the ones of the reference humidity sensor used (i.e., seconds). A sensor/actuator hygromorphic device was built by coating a thin flower-shaped poly(dimethylsiloxane) (PDMS) substrate with the thermoresponsive polymer. The large swelling due to water uptake upon exposure to humid environment at temperatures below the LCST caused the petals to bend, mimicking the capability of plants to respond to environmental stimuli via reversible mechanical motion.

2.
Macromolecules ; 52(18): 6817-6824, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31579141

RESUMO

In this contribution, we report on the thin-film synthesis of a novel thermoresponsive polymer, namely, poly(N-vinylcaprolactam) cross-linked by di(ethylene glycol)divinyl ether [p(NVCL-co-DEGDVE)] by initiated chemical vapor deposition (iCVD). Its transition between swollen and shrunken states in film thickness and the corresponding lower critical solution temperature (LCST) was investigated by spectroscopic ellipsometry in water. Water contact angle measurements and nano-indentation experiments reveal that the transition is accompanied by a change in wettability and elastic modulus. The amount of cross-linking was used to tune the thermoresponsive behavior of the thin films, resulting in higher swelling and LCST, increased surface rearrangement, and lower stiffness for less cross-linked polymers. For the first time, the filament temperature during iCVD synthesis was used to vary the chain length of the resulting polymeric systems and, thus, the position of their thermoresponsive transition. With that, swelling of up to 250% compared to the dry thickness and transition temperatures ranging from 16 to 40 °C could be achieved.

3.
J Phys Chem C Nanomater Interfaces ; 123(39): 24165-24171, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31602284

RESUMO

In this contribution, we report on the thin-film synthesis of a thermoresponsive polymer onto another polymer used as an enteric coating in drug applications. In particular, we deposit cross-linked poly(N-vinylcaprolactam) (pNVCL) thin films by initiated chemical vapor deposition (iCVD) onto spin-coated Eudragit (EUD) layers. Already upon iCVD synthesis, the layered structure starts to form wrinkles at a minimum iCVD thickness of 30 nm. By changing the EUD layer thickness and the amount of cross-linking used during iCVD, the morphology of the wrinkles is demonstrated to be readily tunable. Laterally, the double-layer structures vary in morphology from being ultrasmooth to exhibiting up to a 3.5 µm wrinkle wavelength. The surface roughness and, thus, the wrinkles' height can be tailored from below 1 nm up to 100 nm. From the resulting wavelength of wrinkles, an estimation of the elastic modulus of pNVCL proves its tunability over a wide range of values thanks to the iCVD process. This study elucidates an uncomplicated way to tune the wrinkles' morphology and, thus, the surface area of a system that can be employed in drug delivery applications. Hence, an enteric coating of EUD together with an iCVD-synthesized thermoresponsive thin film is proposed as a promising composite encapsulation layer to outperform established systems in terms of tunability of the response to multiple external stimuli.

4.
Dalton Trans ; 48(37): 14178-14188, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31506655

RESUMO

The delivery of porous ZnO thin films represents a challenge due to the low porosity achievable by conventional thin film deposition methods. In this contribution, the synthesis of mesoporous ZnO thin films is demonstrated through calcination in air of hybrid Zn-based polymers (zincone) obtained by molecular layer deposition (MLD). The calcination process was followed as a function of temperature using X-ray reflectivity and diffraction, together with spectroscopic ellipsometry. Temperature ranges were identified for the removal of the organic ligands (120 °C) and ZnO crystallization (340 °C). The total porosity and open porosity were also determined by ellipsometric porosimetry (EP) and grazing incidence small-angle X-ray scattering (GISAXS). The calcination temperature was identified as a control parameter for obtaining different (open) porosity contents and pore size distributions (PSDs). Open porosity values of 12.6% and 19.6% were obtained by calcining the zincones up to 600 °C and 400 °C, respectively. Open PSDs with a mean value of 3.2 nm (400 °C) and 4.6 nm (600 °C) were obtained. The formation of larger slit-shaped pores was demonstrated at higher temperatures, due to the growth and coalescence of ZnO crystallites.

5.
Macromolecules ; 51(23): 9692-9699, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30591733

RESUMO

In this contribution, the temperature-dependent swelling behavior of vapor-deposited smart polymer thin films is shown to depend on cross-linking and deposited film thickness. Smart polymers find application in sensor and actuator setups and are mostly fabricated on delicate substrates with complex nanostructures that need to be conformally coated. As initiated chemical vapor deposition (iCVD) meets these specific requirements, the present work concentrates on temperature-dependent swelling behavior of iCVD poly(N-isopropylacrylamide) thin films. The transition between swollen and shrunken state and the corresponding lower critical solution temperature (LCST) was investigated by spectroscopic ellipsometry in water. The films' density in the dry state evaluated from X-ray reflectivity could be successfully correlated to the position of the LCST in water and was found to vary between 1.1 and 1.3 g/cm3 in the thickness range 30-330 nm. This work emphasizes the importance of insights in both the deposition process and mechanisms during swelling of smart polymeric structures.

6.
Macromolecules ; 51(15): 5694-5703, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30135610

RESUMO

Control over thin film growth (e.g., crystallographic orientation and morphology) is of high technological interest as it affects several physicochemical material properties, such as chemical affinity, mechanical stability, and surface morphology. The effect of process parameters on the molecular organization of perfluorinated polymers deposited via initiated chemical vapor deposition (iCVD) has been previously reported. We showed that the tendency of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA) to organize in an ordered lamellar structure is a function of the filament and substrate temperatures adopted during the iCVD process. In this contribution, a more thorough investigation of the effect of such parameters is presented, using synchrotron radiation grazing incidence and specular X-ray diffraction (GIXD and XRD) and atomic force microscopy (AFM). The parameters influencing the amorphization, mosaicity, and preferential orientation are addressed. Different growth regimes were witnessed, characterized by a different surface structuring and by the presence of particular crystallographic textures. The combination of morphological and crystallographic analyses allowed the identification of pPFDA growth possibilities between island or columnar growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...