Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(6): 230410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325597

RESUMO

Sagittal otoliths, typically composed of aragonite, are frequently laid down rather as vaterite during growth in hatchery-reared fish populations. Sagittal vateritization is believed to impair individual hearing/balancing abilities, but the causal mechanism remains unclear. Here we experimentally demonstrated that rearing in Sr-rich water induces sagittal vateritization in the HdrR-II1 inbred strain of the Japanese rice fish, Oryzias latipes. Both sagittae were partly vateritized in 70% of individuals subjected to the Sr2+ treatment (n = 10), whereas fish reared in normal tap water showed no sagittal vateritization (n = 8). Our result is consistent with the theoretical prediction that vaterite becomes thermodynamically more stable than aragonite as the Sr2+ concentration in solution increases. A vateritic layer develops surrounding the original aragonitic sagitta in vateritized otoliths, some of which take on a comma-like shape. Electron probe microanalysis demonstrates that the vateritized phase is characterized by lower Sr2+ and higher Mg2+ concentrations than the aragonitic phase. It is unlikely that increased environmental Sr2+ is responsible for the sagittal vateritization in farmed fish. However, our findings likely help to establish an in vivo assay using O. latipes to understand the physiological process underlying the sagittal vateritization in farmed fish.

2.
J Fish Biol ; 95(6): 1391-1398, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587274

RESUMO

Variation in the life cycle of diadromous fishes can be explained by differential food availability between marine and freshwater habitats, since migration is often interpreted as a mechanism for exploiting food resources. Theoretically, a migration pattern of mainly remaining in freshwater occurs in tropical and subtropical habitats where fluvial productivity possibly exceeds marine productivity. However, in Yakugachi River, Amami-Oshima Island, southern Japan, low nutrient concentrations in the river suggest that food availability is limited for the subtropical Ryukyu-ayu Plecoglossus altivelis ryukyuensis. Since Ryukyu-ayu is an amphidromous fish that mainly grows in rivers after spending 2 months in the sea, limited food availability in rivers would force this species to migrate to other habitats with better food availability. Otolith increment and Sr:Ca analyses of 48 adult Ryukyu-ayu collected from the Yakugachi River revealed that all individuals visited estuaries more than three times after moving upstream. Although the specific growth rates of this species in the river had no correlation with the salinity profile in the fluvial period, this movement may be an adaptive choice because the salinity profile significantly affected the body size at maturity. Our results highlighted individual-based variations in amphidromous migration for utilizing estuaries, which could be explained by relatively higher productivity in estuarine than in freshwater and marine habitats.


Assuntos
Ecossistema , Estuários , Estágios do Ciclo de Vida , Osmeriformes/crescimento & desenvolvimento , Migração Animal , Animais , Tamanho Corporal , Japão , Membrana dos Otólitos/crescimento & desenvolvimento , Rios , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...