Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(7): e0219655, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306463

RESUMO

Prostate cancer was the most common form and had the second highest death rate of male cancer in the United States in 2015. Current diagnosis techniques, such as prostate-specific antigen tests, transrectal ultrasound scans, and biopsies, are often inconclusive, and in the latter case, invasive. Here, we explore the use of clofazimine hydrochloride nanoparticles (CFZ-HCl NPs), a repurposed formulation from an FDA-approved antimycobacterial agent, as a photoacoustic contrast agent for the evaluation of prostate cancer due to its macrophage-targeting capabilities and high optical absorbance at 495 nm. Using a transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model, our results indicate a preferential accumulation of intravenously injected CFZ-HCl NPs in cancerous prostates over normal prostates. Differences in accumulation of CFZ-HCl NPs between cancerous and normal prostates were determined using a two-wavelength unmixing technique via ex vivo photoacoustic imaging. Thus, intravenous injection of CFZ-HCl NPs leads to differences in the interactions of the particles with cancerous vs normal prostates, while allowing for photoacoustic detection and analysis of prostate cancer. These findings could lead to the development of a new noninvasive technique for the detection and monitoring of prostate cancer progression in an animal model that can potentially be translated to human patients.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Cloretos/farmacocinética , Clofazimina/farmacocinética , Nanopartículas/química , Próstata/efeitos dos fármacos , Neoplasias da Próstata/diagnóstico por imagem , Animais , Meios de Contraste/farmacocinética , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Nanomedicina/métodos , Técnicas Fotoacústicas , Sensibilidade e Especificidade
2.
Sci Rep ; 9(1): 5702, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952950

RESUMO

Macrophages are immune cells responsible for tissue debridement and fighting infection. Clofazimine, an FDA-approved antibiotic, accumulates and precipitates as rod-shaped, crystal-like drug inclusions within macrophage lysosomes. Drug treatment as well as pathophysiological states could induce changes in macrophage mechanical property which in turn impact their phenotype and function. Here we report the use of acoustic tweezing cytometry as a new approach for in situ mechanical phenotyping of macrophages and for targeted macrophage cytotripsy. Acoustic tweezing cytometry applies ultrasound pulses to exert controlled forces to individual cells via integrin-bound microbubbles, enabling a creep test for measuring cellular mechanical property or inducing irreversible changes to the cells. Our results revealed that macrophages with crystal-like drug inclusions became significantly softer with higher cell compliance, and behaved more elastic with faster creep and recovery time constants. On the contrary, phagocytosis of solid polyethylene microbeads or treatment with soluble clofazimine rendered macrophages stiffer. Most notably, application of ultrasound pulses of longer duration and higher amplitude in ATC actuated the integrin-bound microbubbles to mobilize the crystal-like drug inclusions inside macrophages, turning the rod-shaped drug inclusions into intracellular microblender that effectively destructed the cells. This phenomenon of acoustic mechanopharmaceutical cytotripsy may be exploited for ultrasound activated, macrophage-directed drug release and delivery.


Assuntos
Fenômenos Biomecânicos , Técnicas Citológicas/métodos , Macrófagos/efeitos dos fármacos , Ondas Ultrassônicas , Acústica , Animais , Clofazimina/farmacologia , Humanos , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microbolhas
3.
Pharm Res ; 36(1): 3, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406478

RESUMO

PURPOSE: Drug-induced liver injuries (DILI) comprise a significant proportion of adverse drug reactions leading to hospitalizations and death. One frequent DILI is granulomatous inflammation from exposure to harmful metabolites that activate inflammatory pathways of immune cells of the liver, which may act as a barrier to isolate the irritating stimulus and limit tissue damage. METHODS: Paralleling the accumulation of CFZ precipitates in the liver, granulomatous inflammation was studied to gain insight into its effect on liver structure and function. A structural analog that does not precipitate within macrophages was also studied using micro-analytical approaches. Depleting macrophages was used to inhibit granuloma formation and assess its effect on drug bioaccumulation and toxicity. RESULTS: Granuloma-associated macrophages showed a distinct phenotype, differentiating them from non-granuloma macrophages. Granulomas were induced by insoluble CFZ cargo, but not by the more soluble analog, pointing to precipitation being a factor driving granulomatous inflammation. Granuloma-associated macrophages showed increased activation of lysosomal master-regulator transcription factor EB (TFEB). Inhibiting granuloma formation increased hepatic necrosis and systemic toxicity in CFZ-treated animals. CONCLUSIONS: Granuloma-associated macrophages are a specialized cell population equipped to actively sequester and stabilize cytotoxic chemotherapeutic agents. Thus, drug-induced granulomas may function as drug sequestering "organoids" -an induced, specialized sub-compartment- to limit tissue damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clofazimina/farmacocinética , Macrófagos/metabolismo , Animais , Clofazimina/administração & dosagem , Clofazimina/efeitos adversos , Clofazimina/metabolismo , Sistemas de Liberação de Medicamentos , Granuloma/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos
4.
Pharmaceutics ; 10(4)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453628

RESUMO

Clofazimine (CFZ) is a broad spectrum antimycobacterial agent recommended by the World Health Organization as a first line treatment for leprosy and second line treatment for multidrug resistant tuberculosis. Oral administration of CFZ leads to a red skin pigmentation side effect. Since CFZ is a weakly basic, red phenazine dye, the skin pigmentation side effect results from lipophilic partitioning of the circulating, free base (neutral) form of CFZ into the skin. Here, we developed a stable and biocompatible formulation of CFZ-HCl microcrystals that mimics the predominant form of the drug that bioaccumulates in macrophages, following long term oral CFZ administration. In mice, intravenous injection of these biomimetic CFZ-HCl microcrystals led to visible drug accumulation in macrophages of the reticuloendothelial system with minimal skin accumulation or pigmentation. In fact, no skin pigmentation was observed when the total amount of CFZ-HCl administered was equivalent to the total oral dose leading to maximal skin pigmentation. Thus, parenteral (injected or inhaled) biomimetic formulations of CFZ-HCl could be instrumental to avoid the pigmentation side effect of oral CFZ therapy.

5.
Pharm Res ; 36(1): 12, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421091

RESUMO

PURPOSE: Clofazimine (CFZ) is an FDA-approved, poorly soluble small molecule drug that precipitates as crystal-like drug inclusions (CLDIs) which accumulate in acidic cytoplasmic organelles of macrophages. In this study, we considered CLDIs as an expandable mechanopharmaceutical device, to study how macrophages respond to an increasingly massive load of endophagolysosomal cargo. METHODS: First, we experimentally tested how the accumulation of CFZ in CLDIs impacted different immune cell subpopulations of different organs. Second, to further investigate the mechanism of CLDI formation, we asked whether specific accumulation of CFZ hydrochloride crystals in lysosomes could be explained as a passive, thermodynamic equilibrium phenomenon. A cellular pharmacokinetic model was constructed, simulating CFZ accumulation driven by pH-dependent ion trapping of the protonated drug in the acidic lysosomes, followed by the precipitation of CFZ hydrochloride salt via a common ion effect caused by high chloride concentrations. RESULTS: While lower loads of CFZ were mostly accommodated in lung macrophages, increased CFZ loading was accompanied by organ-specific changes in macrophage numbers, size and intracellular membrane architecture, maximizing the cargo storage capabilities. With increasing loads, the total cargo mass and concentrations of CFZ in different organs diverged, while that of individual macrophages converged. The simulation results support the notion that the proton and chloride ion concentrations of macrophage lysosomes are sufficient to drive the massive, cell type-selective accumulation and growth of CFZ hydrochloride biocrystals. CONCLUSION: CLDIs effectively function as an expandable mechanopharmaceutical device, revealing the coordinated response of the macrophage population to an increasingly massive, whole-organism endophagolysosomal cargo load.


Assuntos
Antibacterianos/farmacocinética , Clofazimina/farmacocinética , Macrófagos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Simulação por Computador , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tamanho da Partícula , Óleo de Gergelim , Solubilidade , Solventes
6.
Sci Rep ; 8(1): 2934, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440773

RESUMO

Weakly basic, poorly soluble chemical agents could be exploited as building blocks for constructing sophisticated molecular devices inside the cells of living organisms. Here, using experimental and computational approaches, we probed the relationship between the biological mechanisms mediating lysosomal ion homeostasis and the self-assembly of a weakly basic small molecule building block (clofazimine) into a functional, mechanopharmaceutical device (intracellular Crystal-Like Drug Inclusions - "CLDIs") in macrophage lysosomes. Physicochemical considerations indicate that the intralysosomal stabilization of the self-assembled mechanopharmaceutical device depends on the pHmax of the weakly basic building block and its affinity for chloride, both of which are consistent with the pH and chloride content of a physiological lysosomal microenvironment. Most importantly, in vitro and in silico studies revealed that high expression levels of the vacuolar ATPase (V-ATPase), irrespective of the expression levels of chloride channels, are necessary and sufficient to explain the cell-type dependent formation, stabilization, and biocompatibility of the self-assembled mechanopharmaceutical device within macrophages.


Assuntos
Biomimética/instrumentação , Clofazimina/metabolismo , Engenharia , Espaço Intracelular/metabolismo , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Clofazimina/química , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Solubilidade , Termodinâmica
7.
J Invest Dermatol ; 138(3): 697-703, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29042210

RESUMO

Clofazimine is a weakly basic, Food and Drug Administration-approved antibiotic recommended by the World Health Organization to treat leprosy and multi-drug-resistant tuberculosis. Upon prolonged treatment, clofazimine extensively bioaccumulates and precipitates throughout the organism, forming crystal-like drug inclusions (CLDIs). Due to the drug's red color, it is widely believed that clofazimine bioaccumulation results in skin pigmentation, its most common side effect. To test whether clofazimine-induced skin pigmentation is due to CLDI formation, we synthesized a closely related clofazimine analog that does not precipitate under physiological pH and chloride conditions that are required for CLDI formation. Despite the absence of detectable CLDIs in mice, administration of this analog still led to significant skin pigmentation. In clofazimine-treated mice, skin cryosections revealed no evidence of CLDIs when analyzed with a microscopic imaging system specifically designed for detecting clofazimine aggregates. Rather, the reflectance spectra of the skin revealed a signal corresponding to the soluble, free base form of the drug. Consistent with the low concentrations of clofazimine in the skin, these results suggest that clofazimine-induced skin pigmentation is not due to clofazimine precipitation and CLDI formation, but rather to the partitioning of the circulating, free base form of the drug into subcutaneous fat.


Assuntos
Clofazimina/toxicidade , Pigmentação da Pele/efeitos dos fármacos , Animais , Clofazimina/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7
8.
Antimicrob Agents Chemother ; 60(6): 3470-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021320

RESUMO

Clofazimine (CFZ) is a poorly soluble antibiotic and anti-inflammatory drug indicated for the treatment of leprosy. In spite of its therapeutic value, CFZ therapy is accompanied by the formation of drug biocrystals that accumulate within resident tissue macrophages, without obvious toxicological manifestations. Therefore, to specifically elucidate the off-target consequences of drug bioaccumulation in macrophages, we compared the level of inflammasome activation in CFZ-accumulating organs (spleen, liver and lung) in mice after 2 and 8 weeks of CFZ treatment when the drug exists in soluble and insoluble (biocrystalline) forms, respectively. Surprisingly, the results showed a drastic reduction in caspase 1 and interleukin-1ß (IL-1ß) cleavage in the livers of mice treated with CFZ for 8 weeks (8-week-CFZ-treated mice) compared to 2-week-CFZ-treated and control mice, which was accompanied by a 3-fold increase in hepatic IL-1 receptor antagonist (IL-1RA) production and a 21-fold increase in serum IL-1RA levels. In the lung and spleen, IL-1ß cleavage and tumor necrosis factor alpha expression were unaffected by soluble or biocrystal CFZ forms. Functionally, there was a drastic reduction of carrageenan- and lipopolysaccharide-induced inflammation in the footpads and lungs, respectively, of 8-week-CFZ-treated mice. This immunomodulatory activity of CFZ biocrystal accumulation was attributable to the upregulation of IL-1RA, since CFZ accumulation had minimal effect in IL-1RA knockout mice or 2-week-CFZ-treated mice. In conclusion, CFZ accumulation and biocrystal formation in resident tissue macrophages profoundly altered the host's immune system and prompted an IL-1RA-dependent, systemic anti-inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Clofazimina/farmacologia , Inflamassomos/imunologia , Proteína Acessória do Receptor de Interleucina-1/biossíntese , Macrófagos/efeitos dos fármacos , Animais , Carragenina , Caspase 1/metabolismo , Inflamação/tratamento farmacológico , Proteína Acessória do Receptor de Interleucina-1/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Baço/metabolismo , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...