Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(5): 3041-3049, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653478

RESUMO

In this study, antibacterial, synthetic poly(Σ-caprolactone)-poly(ethylene oxide) (PCL-PEO) multilayer nanofibers were produced by an electrospinning method. The material was synthesized in 3 layers. The upper-lower protective layers were produced by PCL nanofibers and the intermediate layer was produced from PEO nanofiber containing sericin-capped silver nanoparticles (S-AgNPs). The electrospinning conditions in which nano-sized, smooth, bead-free fibers were obtained was determined to be an applied voltage of 20 kV, a flow rate of 8 µL/min and a distance between the collector and the needle tip of 22 cm for the PCL layer (dissolved at a 12% g/mL concentration in a chloroform:methanol (3:2) solvent mixture) layer. For the S-AgNPs doped PEO layer (dissolved at a 3.5% g/mL concentration in water), the corresponding conditions were determined to be 20 kV, 15 µL/min and 20 cm. To characterize the three-layer material that consisted of PCL and S-AgNPs doped PEO layers, FTIR and SEM analyses were performed, and the water retention capacity, in situ degradability and antibacterial activity of the material was investigated. According to SEM analysis, the fibers obtained were found to be nano-sized, smooth and bead-free and the average size of the nanofibers forming the PCL layer was 687 nm while the average size of the fibers forming the PEO layer was 98 nm. Antibacterial activity tests were performed using gram-positive (Staphylococcus aureus ATCC 6538) and gram-negative (Escherichia coli ATCC 25922) bacteria and the resulting biomaterial was found to have antimicrobial effect on both gram-negative and gram-positive bacteria. It was determined that the 3-layer material obtained in this study can be used as a wound dressing.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanofibras , Sericinas , Antibacterianos/farmacologia , Bandagens , Óxido de Etileno , Poliésteres , Polietilenoglicóis , Sericinas/farmacologia , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...